NANOCOATING PROCESS FOR TEXTILES APPLICATIONS AND WOOD PROTECTION

This paper presents the research results obtained in ERA NET MANUCOAT project, coordinated by INCDTP in collaboration with the following partners: INCDMNR-IMNR, SC MGM STAR CONSTRUCT SRL –Romania and IRIS-Spain. The objective of the research was to develop and obtain textile and wood surfaces with...

Full description

Bibliographic Details
Main Authors: NICULESCU Claudia, DUMITRESCU Iuliana, GHITULEASA Carmen, MOCIOIU Ana-Maria, POPESCU Alina, PITICESCU Roxana, PETRICEANU Mirela, BOGDANESCU Cristian, SOBETKII Arcadie
Format: Article
Language:English
Published: Editura Universităţii din Oradea 2014-05-01
Series:Annals of the University of Oradea: Fascicle of Textiles, Leatherwork
Subjects:
Online Access:http://textile.webhost.uoradea.ro/Annals/Vol%20XV-no%20II/Art.%20nr.%2048,%20pag%2069-74.pdf
Description
Summary:This paper presents the research results obtained in ERA NET MANUCOAT project, coordinated by INCDTP in collaboration with the following partners: INCDMNR-IMNR, SC MGM STAR CONSTRUCT SRL –Romania and IRIS-Spain. The objective of the research was to develop and obtain textile and wood surfaces with self-cleaning, photo catalytic, antibacterial and antifungal properties. An innovative method of manufacturing nanoparticles by hydrothermal process in a single step without any further heat treatment and controlled stoichiometry, tested spray coating technology (sputtering) were developed. Full characterization of nanostructured powders in terms of chemical, physical, structural, thermal and technological characteristics was performed. The most important features to be considered in the treatment of wood by sputtering in order to deposit thin layers of TiO2 NPs or TiO2/Ag as the humidity should be below 12% and the maximum roughness P150, depending on the species of wood. Future works envisage optimizing the existing sputtering systems for pilot stage, in order to make nanoparticles deposits on large areas of textile and wood. The results of the research are photocatalytic textiles for surgical gowns, operative fields, hospital bed sheets and curtains and drapes for public spaces.
ISSN:1843-813X
1843-813X