Nonexistence of global solutions to the system of semilinear parabolic equations with biharmonic operator and singular potential

In the domain $Q_{R}'= \{ x:| x| >R\}\times( 0,+\infty)$ we consider the problem $$\displaylines{ \frac{\partial u_1}{\partial t}+\Delta^2 u_1-\frac{C_1}{|x| ^4}u_1 =| x| ^{\sigma _1}| u_2| ^{q_1}, \quad u_1| _{t=0}=u_{10}( x)\geq0, \cr \frac{\partial u_2}{\partial t}+\Delta^2 u_2-\fr...

Full description

Bibliographic Details
Main Author: Shirmayil Bagirov
Format: Article
Language:English
Published: Texas State University 2018-01-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2018/09/abstr.html
id doaj-0ad9e2985e1f4a7f8755065f4e72b522
record_format Article
spelling doaj-0ad9e2985e1f4a7f8755065f4e72b5222020-11-24T22:21:28ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912018-01-01201809,113Nonexistence of global solutions to the system of semilinear parabolic equations with biharmonic operator and singular potentialShirmayil Bagirov0 NAS of Azerbaijan, Baku, Azerbaijan In the domain $Q_{R}'= \{ x:| x| >R\}\times( 0,+\infty)$ we consider the problem $$\displaylines{ \frac{\partial u_1}{\partial t}+\Delta^2 u_1-\frac{C_1}{|x| ^4}u_1 =| x| ^{\sigma _1}| u_2| ^{q_1}, \quad u_1| _{t=0}=u_{10}( x)\geq0, \cr \frac{\partial u_2}{\partial t}+\Delta^2 u_2-\frac{C_2}{| x| ^4}u_2=| x| ^{\sigma _2}| u_1| ^{q_2},\quad u_2| _{t=0}=u_{20}( x)\geq0, \cr \int_0^\infty \int_{\partial B_{R}} u_i\,ds\,dt\geq 0, \quad \int_0^\infty \int_{\partial B_{R}}\Delta u_i\,ds\,dt\leq 0, }$$ where $\sigma_i\in \mathbb{R} $, $ q_i>1 $, $ 0\leq C_i<( \frac{n( n-4) }{4}) ^2$, $ i=1,2 $. Sufficient condition for the nonexistence of global solutions is obtained.The proof is based on the method of test functions.http://ejde.math.txstate.edu/Volumes/2018/09/abstr.htmlSystem of semilinear parabolic equationbiharmonic operatorglobal solutioncritical exponentmethod of test functions
collection DOAJ
language English
format Article
sources DOAJ
author Shirmayil Bagirov
spellingShingle Shirmayil Bagirov
Nonexistence of global solutions to the system of semilinear parabolic equations with biharmonic operator and singular potential
Electronic Journal of Differential Equations
System of semilinear parabolic equation
biharmonic operator
global solution
critical exponent
method of test functions
author_facet Shirmayil Bagirov
author_sort Shirmayil Bagirov
title Nonexistence of global solutions to the system of semilinear parabolic equations with biharmonic operator and singular potential
title_short Nonexistence of global solutions to the system of semilinear parabolic equations with biharmonic operator and singular potential
title_full Nonexistence of global solutions to the system of semilinear parabolic equations with biharmonic operator and singular potential
title_fullStr Nonexistence of global solutions to the system of semilinear parabolic equations with biharmonic operator and singular potential
title_full_unstemmed Nonexistence of global solutions to the system of semilinear parabolic equations with biharmonic operator and singular potential
title_sort nonexistence of global solutions to the system of semilinear parabolic equations with biharmonic operator and singular potential
publisher Texas State University
series Electronic Journal of Differential Equations
issn 1072-6691
publishDate 2018-01-01
description In the domain $Q_{R}'= \{ x:| x| >R\}\times( 0,+\infty)$ we consider the problem $$\displaylines{ \frac{\partial u_1}{\partial t}+\Delta^2 u_1-\frac{C_1}{|x| ^4}u_1 =| x| ^{\sigma _1}| u_2| ^{q_1}, \quad u_1| _{t=0}=u_{10}( x)\geq0, \cr \frac{\partial u_2}{\partial t}+\Delta^2 u_2-\frac{C_2}{| x| ^4}u_2=| x| ^{\sigma _2}| u_1| ^{q_2},\quad u_2| _{t=0}=u_{20}( x)\geq0, \cr \int_0^\infty \int_{\partial B_{R}} u_i\,ds\,dt\geq 0, \quad \int_0^\infty \int_{\partial B_{R}}\Delta u_i\,ds\,dt\leq 0, }$$ where $\sigma_i\in \mathbb{R} $, $ q_i>1 $, $ 0\leq C_i<( \frac{n( n-4) }{4}) ^2$, $ i=1,2 $. Sufficient condition for the nonexistence of global solutions is obtained.The proof is based on the method of test functions.
topic System of semilinear parabolic equation
biharmonic operator
global solution
critical exponent
method of test functions
url http://ejde.math.txstate.edu/Volumes/2018/09/abstr.html
work_keys_str_mv AT shirmayilbagirov nonexistenceofglobalsolutionstothesystemofsemilinearparabolicequationswithbiharmonicoperatorandsingularpotential
_version_ 1725770917472108544