Nonexistence of global solutions to the system of semilinear parabolic equations with biharmonic operator and singular potential
In the domain $Q_{R}'= \{ x:| x| >R\}\times( 0,+\infty)$ we consider the problem $$\displaylines{ \frac{\partial u_1}{\partial t}+\Delta^2 u_1-\frac{C_1}{|x| ^4}u_1 =| x| ^{\sigma _1}| u_2| ^{q_1}, \quad u_1| _{t=0}=u_{10}( x)\geq0, \cr \frac{\partial u_2}{\partial t}+\Delta^2 u_2-\fr...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2018-01-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2018/09/abstr.html |
id |
doaj-0ad9e2985e1f4a7f8755065f4e72b522 |
---|---|
record_format |
Article |
spelling |
doaj-0ad9e2985e1f4a7f8755065f4e72b5222020-11-24T22:21:28ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912018-01-01201809,113Nonexistence of global solutions to the system of semilinear parabolic equations with biharmonic operator and singular potentialShirmayil Bagirov0 NAS of Azerbaijan, Baku, Azerbaijan In the domain $Q_{R}'= \{ x:| x| >R\}\times( 0,+\infty)$ we consider the problem $$\displaylines{ \frac{\partial u_1}{\partial t}+\Delta^2 u_1-\frac{C_1}{|x| ^4}u_1 =| x| ^{\sigma _1}| u_2| ^{q_1}, \quad u_1| _{t=0}=u_{10}( x)\geq0, \cr \frac{\partial u_2}{\partial t}+\Delta^2 u_2-\frac{C_2}{| x| ^4}u_2=| x| ^{\sigma _2}| u_1| ^{q_2},\quad u_2| _{t=0}=u_{20}( x)\geq0, \cr \int_0^\infty \int_{\partial B_{R}} u_i\,ds\,dt\geq 0, \quad \int_0^\infty \int_{\partial B_{R}}\Delta u_i\,ds\,dt\leq 0, }$$ where $\sigma_i\in \mathbb{R} $, $ q_i>1 $, $ 0\leq C_i<( \frac{n( n-4) }{4}) ^2$, $ i=1,2 $. Sufficient condition for the nonexistence of global solutions is obtained.The proof is based on the method of test functions.http://ejde.math.txstate.edu/Volumes/2018/09/abstr.htmlSystem of semilinear parabolic equationbiharmonic operatorglobal solutioncritical exponentmethod of test functions |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Shirmayil Bagirov |
spellingShingle |
Shirmayil Bagirov Nonexistence of global solutions to the system of semilinear parabolic equations with biharmonic operator and singular potential Electronic Journal of Differential Equations System of semilinear parabolic equation biharmonic operator global solution critical exponent method of test functions |
author_facet |
Shirmayil Bagirov |
author_sort |
Shirmayil Bagirov |
title |
Nonexistence of global solutions to the system of semilinear parabolic equations with biharmonic operator and singular potential |
title_short |
Nonexistence of global solutions to the system of semilinear parabolic equations with biharmonic operator and singular potential |
title_full |
Nonexistence of global solutions to the system of semilinear parabolic equations with biharmonic operator and singular potential |
title_fullStr |
Nonexistence of global solutions to the system of semilinear parabolic equations with biharmonic operator and singular potential |
title_full_unstemmed |
Nonexistence of global solutions to the system of semilinear parabolic equations with biharmonic operator and singular potential |
title_sort |
nonexistence of global solutions to the system of semilinear parabolic equations with biharmonic operator and singular potential |
publisher |
Texas State University |
series |
Electronic Journal of Differential Equations |
issn |
1072-6691 |
publishDate |
2018-01-01 |
description |
In the domain $Q_{R}'= \{ x:| x| >R\}\times( 0,+\infty)$
we consider the problem
$$\displaylines{
\frac{\partial u_1}{\partial t}+\Delta^2 u_1-\frac{C_1}{|x| ^4}u_1
=| x| ^{\sigma _1}| u_2| ^{q_1}, \quad u_1| _{t=0}=u_{10}( x)\geq0, \cr
\frac{\partial u_2}{\partial t}+\Delta^2 u_2-\frac{C_2}{|
x| ^4}u_2=| x| ^{\sigma _2}| u_1| ^{q_2},\quad u_2|
_{t=0}=u_{20}( x)\geq0, \cr
\int_0^\infty \int_{\partial B_{R}} u_i\,ds\,dt\geq 0, \quad
\int_0^\infty \int_{\partial B_{R}}\Delta u_i\,ds\,dt\leq 0,
}$$
where $\sigma_i\in \mathbb{R} $, $ q_i>1 $,
$ 0\leq C_i<( \frac{n( n-4) }{4}) ^2$, $ i=1,2 $.
Sufficient condition for the nonexistence of global solutions
is obtained.The proof is based on the method of test functions. |
topic |
System of semilinear parabolic equation biharmonic operator global solution critical exponent method of test functions |
url |
http://ejde.math.txstate.edu/Volumes/2018/09/abstr.html |
work_keys_str_mv |
AT shirmayilbagirov nonexistenceofglobalsolutionstothesystemofsemilinearparabolicequationswithbiharmonicoperatorandsingularpotential |
_version_ |
1725770917472108544 |