Neuroprotective Effect of Artesunate in Experimental Model of Traumatic Brain Injury
Traumatic brain injuries (TBI) are an important public health challenge. In addition, subsequent events at TBI can compromise the quality of life of these patients. In fact, TBI is associated with several complications for both long and short term, some evidence shows how TBI is associated with a de...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2018-07-01
|
Series: | Frontiers in Neurology |
Subjects: | |
Online Access: | https://www.frontiersin.org/article/10.3389/fneur.2018.00590/full |
id |
doaj-0dc58b7aac0142109f7eb3174b1e8ccb |
---|---|
record_format |
Article |
spelling |
doaj-0dc58b7aac0142109f7eb3174b1e8ccb2020-11-24T23:44:03ZengFrontiers Media S.A.Frontiers in Neurology1664-22952018-07-01910.3389/fneur.2018.00590380047Neuroprotective Effect of Artesunate in Experimental Model of Traumatic Brain InjuryEnrico Gugliandolo0Ramona D'Amico1Marika Cordaro2Roberta Fusco3Rosalba Siracusa4Rosalia Crupi5Daniela Impellizzeri6Salvatore Cuzzocrea7Salvatore Cuzzocrea8Rosanna Di Paola9Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, ItalyDepartment of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, ItalyDepartment of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, ItalyDepartment of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, ItalyDepartment of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, ItalyDepartment of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, ItalyDepartment of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, ItalyDepartment of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, ItalyDepartment of Pharmacological and Physiological Science, Saint Louis University, St. Louis, MO, United StatesDepartment of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, ItalyTraumatic brain injuries (TBI) are an important public health challenge. In addition, subsequent events at TBI can compromise the quality of life of these patients. In fact, TBI is associated with several complications for both long and short term, some evidence shows how TBI is associated with a decline in cognitive functions such as the risk of developing dementia, cerebral atrophy, and Parkinson disease. After the direct damage from TBI, a key role in TBI injury is played by the inflammatory response and oxidative stress, that contributes to tissue damage and to neurodegenerative processes, typical of secondary injury, after TBI. Given the complex series of events that are involved after TBI injury, a multitarget pharmacological approach is needed. Artesunate is a more stable derivative of its precursor artemisin, a sesquiterpene lactone obtained from a Chinese plant Artemisia annua, a plant used for centuries in traditional Chinese medicine. artesunate has been shown to be a pluripotent agent with different pharmacological actions. therefore, in this experimental model of TBI we evaluated whether the treatment with artesunate at the dose of 30 mg\Kg, had an efficacy in reducing the neuroinflammatory process after TBI injury, and in inhibiting the NLRP3 inflammasome pathway, which plays a key role in the inflammatory process. We also assessed whether treatment with artesunate was able to exert a neuroprotective action by modulating the release of neurotrophic factors. our results show that artesunate was able to reduce the TBI-induced lesion, it also showed an anti-inflammatory action through the inhibition of Nf-kb, release of proinflammatory cytokines IL-1β and TNF-α and through the inhibition NLRP3 inflammasome complex, furthermore was able to reduce the activation of astrocytes and microglia (GFAP, Iba-1). Finally, our results show that the protective effects of artesunate also occur through the modulation of neurotrophic factors (BDNF, GDNF, NT-3) that play a key role in neuronal survival.https://www.frontiersin.org/article/10.3389/fneur.2018.00590/fulltraumatic brain injuryneuroinflammationneurodegenerationartesunateartemisin |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Enrico Gugliandolo Ramona D'Amico Marika Cordaro Roberta Fusco Rosalba Siracusa Rosalia Crupi Daniela Impellizzeri Salvatore Cuzzocrea Salvatore Cuzzocrea Rosanna Di Paola |
spellingShingle |
Enrico Gugliandolo Ramona D'Amico Marika Cordaro Roberta Fusco Rosalba Siracusa Rosalia Crupi Daniela Impellizzeri Salvatore Cuzzocrea Salvatore Cuzzocrea Rosanna Di Paola Neuroprotective Effect of Artesunate in Experimental Model of Traumatic Brain Injury Frontiers in Neurology traumatic brain injury neuroinflammation neurodegeneration artesunate artemisin |
author_facet |
Enrico Gugliandolo Ramona D'Amico Marika Cordaro Roberta Fusco Rosalba Siracusa Rosalia Crupi Daniela Impellizzeri Salvatore Cuzzocrea Salvatore Cuzzocrea Rosanna Di Paola |
author_sort |
Enrico Gugliandolo |
title |
Neuroprotective Effect of Artesunate in Experimental Model of Traumatic Brain Injury |
title_short |
Neuroprotective Effect of Artesunate in Experimental Model of Traumatic Brain Injury |
title_full |
Neuroprotective Effect of Artesunate in Experimental Model of Traumatic Brain Injury |
title_fullStr |
Neuroprotective Effect of Artesunate in Experimental Model of Traumatic Brain Injury |
title_full_unstemmed |
Neuroprotective Effect of Artesunate in Experimental Model of Traumatic Brain Injury |
title_sort |
neuroprotective effect of artesunate in experimental model of traumatic brain injury |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Neurology |
issn |
1664-2295 |
publishDate |
2018-07-01 |
description |
Traumatic brain injuries (TBI) are an important public health challenge. In addition, subsequent events at TBI can compromise the quality of life of these patients. In fact, TBI is associated with several complications for both long and short term, some evidence shows how TBI is associated with a decline in cognitive functions such as the risk of developing dementia, cerebral atrophy, and Parkinson disease. After the direct damage from TBI, a key role in TBI injury is played by the inflammatory response and oxidative stress, that contributes to tissue damage and to neurodegenerative processes, typical of secondary injury, after TBI. Given the complex series of events that are involved after TBI injury, a multitarget pharmacological approach is needed. Artesunate is a more stable derivative of its precursor artemisin, a sesquiterpene lactone obtained from a Chinese plant Artemisia annua, a plant used for centuries in traditional Chinese medicine. artesunate has been shown to be a pluripotent agent with different pharmacological actions. therefore, in this experimental model of TBI we evaluated whether the treatment with artesunate at the dose of 30 mg\Kg, had an efficacy in reducing the neuroinflammatory process after TBI injury, and in inhibiting the NLRP3 inflammasome pathway, which plays a key role in the inflammatory process. We also assessed whether treatment with artesunate was able to exert a neuroprotective action by modulating the release of neurotrophic factors. our results show that artesunate was able to reduce the TBI-induced lesion, it also showed an anti-inflammatory action through the inhibition of Nf-kb, release of proinflammatory cytokines IL-1β and TNF-α and through the inhibition NLRP3 inflammasome complex, furthermore was able to reduce the activation of astrocytes and microglia (GFAP, Iba-1). Finally, our results show that the protective effects of artesunate also occur through the modulation of neurotrophic factors (BDNF, GDNF, NT-3) that play a key role in neuronal survival. |
topic |
traumatic brain injury neuroinflammation neurodegeneration artesunate artemisin |
url |
https://www.frontiersin.org/article/10.3389/fneur.2018.00590/full |
work_keys_str_mv |
AT enricogugliandolo neuroprotectiveeffectofartesunateinexperimentalmodeloftraumaticbraininjury AT ramonadamico neuroprotectiveeffectofartesunateinexperimentalmodeloftraumaticbraininjury AT marikacordaro neuroprotectiveeffectofartesunateinexperimentalmodeloftraumaticbraininjury AT robertafusco neuroprotectiveeffectofartesunateinexperimentalmodeloftraumaticbraininjury AT rosalbasiracusa neuroprotectiveeffectofartesunateinexperimentalmodeloftraumaticbraininjury AT rosaliacrupi neuroprotectiveeffectofartesunateinexperimentalmodeloftraumaticbraininjury AT danielaimpellizzeri neuroprotectiveeffectofartesunateinexperimentalmodeloftraumaticbraininjury AT salvatorecuzzocrea neuroprotectiveeffectofartesunateinexperimentalmodeloftraumaticbraininjury AT salvatorecuzzocrea neuroprotectiveeffectofartesunateinexperimentalmodeloftraumaticbraininjury AT rosannadipaola neuroprotectiveeffectofartesunateinexperimentalmodeloftraumaticbraininjury |
_version_ |
1725500247071784960 |