Pengenalan Citra Wajah Dengan Menggunakan Transformasi Wavelet Diskrit dan Jaringan Saraf Tiruan Back-Propagation
This paper discusses the facial image recognition system using Discrete Wavelet Transform and back-propagation artificial neural network. Discrete Wavelet Transform processes the input image to obtain the essential features found on the face image. These features are then classified using an back-pr...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Bina Nusantara University
2010-12-01
|
Series: | ComTech |
Subjects: | |
Online Access: | https://journal.binus.ac.id/index.php/comtech/article/view/2569 |
id |
doaj-0df83cf01aad49748ecbe32b98f392c6 |
---|---|
record_format |
Article |
spelling |
doaj-0df83cf01aad49748ecbe32b98f392c62020-11-25T02:55:49ZengBina Nusantara UniversityComTech2087-12442476-907X2010-12-011269170010.21512/comtech.v1i2.25691969Pengenalan Citra Wajah Dengan Menggunakan Transformasi Wavelet Diskrit dan Jaringan Saraf Tiruan Back-PropagationSuhendry Effendy0Bina Nusantara UniversityThis paper discusses the facial image recognition system using Discrete Wavelet Transform and back-propagation artificial neural network. Discrete Wavelet Transform processes the input image to obtain the essential features found on the face image. These features are then classified using an back-propagation artificial neural network for the input image to be identified. Testing the system using facial images in AT & T Database of Faces of 400 images comprising 40 facial images of individuals and web-camera catches as many as 100 images of 10 individuals. The accuracy of level of recognition on AT & T Database of Faces reaches 93.5%, while the accuracy of level of recognition on a web-camera capture images up to 96%. Testing is also done on image of AT & T Database of Faces with given noise. Apparently the noise in the image does not give meaningful effect on the level of recognition accuracy.https://journal.binus.ac.id/index.php/comtech/article/view/2569face recognition, discrete wavelet transformation, artificial neural network, back-propagation |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Suhendry Effendy |
spellingShingle |
Suhendry Effendy Pengenalan Citra Wajah Dengan Menggunakan Transformasi Wavelet Diskrit dan Jaringan Saraf Tiruan Back-Propagation ComTech face recognition, discrete wavelet transformation, artificial neural network, back-propagation |
author_facet |
Suhendry Effendy |
author_sort |
Suhendry Effendy |
title |
Pengenalan Citra Wajah Dengan Menggunakan Transformasi Wavelet Diskrit dan Jaringan Saraf Tiruan Back-Propagation |
title_short |
Pengenalan Citra Wajah Dengan Menggunakan Transformasi Wavelet Diskrit dan Jaringan Saraf Tiruan Back-Propagation |
title_full |
Pengenalan Citra Wajah Dengan Menggunakan Transformasi Wavelet Diskrit dan Jaringan Saraf Tiruan Back-Propagation |
title_fullStr |
Pengenalan Citra Wajah Dengan Menggunakan Transformasi Wavelet Diskrit dan Jaringan Saraf Tiruan Back-Propagation |
title_full_unstemmed |
Pengenalan Citra Wajah Dengan Menggunakan Transformasi Wavelet Diskrit dan Jaringan Saraf Tiruan Back-Propagation |
title_sort |
pengenalan citra wajah dengan menggunakan transformasi wavelet diskrit dan jaringan saraf tiruan back-propagation |
publisher |
Bina Nusantara University |
series |
ComTech |
issn |
2087-1244 2476-907X |
publishDate |
2010-12-01 |
description |
This paper discusses the facial image recognition system using Discrete Wavelet Transform and back-propagation artificial neural network. Discrete Wavelet Transform processes the input image to obtain the essential features found on the face image. These features are then classified using an back-propagation artificial neural network for the input image to be identified. Testing the system using facial images in AT & T Database of Faces of 400 images comprising 40 facial images of individuals and web-camera catches as many as 100 images of 10 individuals. The accuracy of level of recognition on AT & T Database of Faces reaches 93.5%, while the accuracy of level of recognition on a web-camera capture images up to 96%. Testing is also done on image of AT & T Database of Faces with given noise. Apparently the noise in the image does not give meaningful effect on the level of recognition accuracy. |
topic |
face recognition, discrete wavelet transformation, artificial neural network, back-propagation |
url |
https://journal.binus.ac.id/index.php/comtech/article/view/2569 |
work_keys_str_mv |
AT suhendryeffendy pengenalancitrawajahdenganmenggunakantransformasiwaveletdiskritdanjaringansaraftiruanbackpropagation |
_version_ |
1724716077360873472 |