ESTIMASI MODEL REGRESI SEMIPARAMETRIK MENGGUNAKAN ESTIMATOR KERNEL UNIFORM (Studi Kasus: Pasien DBD di RS Puri Raharja)

<p><em>Semiparametric regression model approach is a model approach that combines parametric regression models and nonparametric regression. On semiparametric regression, most explanatory variables are parametric and nonparametric others are. Independent variables that satisfy parametric...

Full description

Bibliographic Details
Main Authors: ANNA FITRIANI, I GUSTI AYU MADE SRINADI, MADE SUSILAWATI
Format: Article
Language:English
Published: Universitas Udayana 2015-11-01
Series:E-Jurnal Matematika
Subjects:
GCV
Online Access:http://ojs.unud.ac.id/index.php/mtk/article/view/16639
id doaj-183f49cc1b7f489f942e0e9ef5768bea
record_format Article
spelling doaj-183f49cc1b7f489f942e0e9ef5768bea2020-11-24T21:56:49ZengUniversitas UdayanaE-Jurnal Matematika2303-17512015-11-014417618011703ESTIMASI MODEL REGRESI SEMIPARAMETRIK MENGGUNAKAN ESTIMATOR KERNEL UNIFORM (Studi Kasus: Pasien DBD di RS Puri Raharja)ANNA FITRIANI0I GUSTI AYU MADE SRINADI1MADE SUSILAWATI2Faculty of Mathematics and Natural Sciences, Udayana UniversityFaculty of Mathematics and Natural Sciences, Udayana UniversityFaculty of Mathematics and Natural Sciences, Udayana University<p><em>Semiparametric regression model approach is a model approach that combines parametric regression models and nonparametric regression. On semiparametric regression, most explanatory variables are parametric and nonparametric others are. Independent variables that satisfy parametric assumptions can be predicted by linear regression analysis method, whereas that does not meet the parametric assumptions alleged by the method nonparametrik.Teknik smoothing (smoothing) nonparametric regression curve on the components used in this study using uniform kernel function. Estimation of optimal semiparametric regression curve is determined by the size of the weight or bandwidth (h) is optimal. Selection of the optimal bandwidth will produce a smooth regression curve estimation in accordance with the pattern data. Selection of the optimum bandwidth is determined based on the criteria that the minimum value of GCV. The purpose of this study was to determine the estimated regression function semiparametric dengue cases using kernel estimators uniform. The response of the data used is old data recovery of patients with Dengue Hemorrhagic Fever (DHF). There are six independent variables such as age (years), body temperature (<sup>0</sup>C), pulse (beats / min), hematocrit (%), platelets </em><em>, and duration of fever (day). Age, body temperature, pulse, platelets, and duration of fever is a component of parametric and nonparametric hematocrit is a component. Bandwidth (h) the optimal minimum GCV obtained based on the criteria of 0</em><em>,</em><em>005. MSE value is generated using multiple linear regression analysis of 0,031. While the semiparametric regression of 0</em><em>,</em><em>00437119.</em><em></em></p>http://ojs.unud.ac.id/index.php/mtk/article/view/16639Semiparametric RegressionKernelBandwidthGCV
collection DOAJ
language English
format Article
sources DOAJ
author ANNA FITRIANI
I GUSTI AYU MADE SRINADI
MADE SUSILAWATI
spellingShingle ANNA FITRIANI
I GUSTI AYU MADE SRINADI
MADE SUSILAWATI
ESTIMASI MODEL REGRESI SEMIPARAMETRIK MENGGUNAKAN ESTIMATOR KERNEL UNIFORM (Studi Kasus: Pasien DBD di RS Puri Raharja)
E-Jurnal Matematika
Semiparametric Regression
Kernel
Bandwidth
GCV
author_facet ANNA FITRIANI
I GUSTI AYU MADE SRINADI
MADE SUSILAWATI
author_sort ANNA FITRIANI
title ESTIMASI MODEL REGRESI SEMIPARAMETRIK MENGGUNAKAN ESTIMATOR KERNEL UNIFORM (Studi Kasus: Pasien DBD di RS Puri Raharja)
title_short ESTIMASI MODEL REGRESI SEMIPARAMETRIK MENGGUNAKAN ESTIMATOR KERNEL UNIFORM (Studi Kasus: Pasien DBD di RS Puri Raharja)
title_full ESTIMASI MODEL REGRESI SEMIPARAMETRIK MENGGUNAKAN ESTIMATOR KERNEL UNIFORM (Studi Kasus: Pasien DBD di RS Puri Raharja)
title_fullStr ESTIMASI MODEL REGRESI SEMIPARAMETRIK MENGGUNAKAN ESTIMATOR KERNEL UNIFORM (Studi Kasus: Pasien DBD di RS Puri Raharja)
title_full_unstemmed ESTIMASI MODEL REGRESI SEMIPARAMETRIK MENGGUNAKAN ESTIMATOR KERNEL UNIFORM (Studi Kasus: Pasien DBD di RS Puri Raharja)
title_sort estimasi model regresi semiparametrik menggunakan estimator kernel uniform (studi kasus: pasien dbd di rs puri raharja)
publisher Universitas Udayana
series E-Jurnal Matematika
issn 2303-1751
publishDate 2015-11-01
description <p><em>Semiparametric regression model approach is a model approach that combines parametric regression models and nonparametric regression. On semiparametric regression, most explanatory variables are parametric and nonparametric others are. Independent variables that satisfy parametric assumptions can be predicted by linear regression analysis method, whereas that does not meet the parametric assumptions alleged by the method nonparametrik.Teknik smoothing (smoothing) nonparametric regression curve on the components used in this study using uniform kernel function. Estimation of optimal semiparametric regression curve is determined by the size of the weight or bandwidth (h) is optimal. Selection of the optimal bandwidth will produce a smooth regression curve estimation in accordance with the pattern data. Selection of the optimum bandwidth is determined based on the criteria that the minimum value of GCV. The purpose of this study was to determine the estimated regression function semiparametric dengue cases using kernel estimators uniform. The response of the data used is old data recovery of patients with Dengue Hemorrhagic Fever (DHF). There are six independent variables such as age (years), body temperature (<sup>0</sup>C), pulse (beats / min), hematocrit (%), platelets </em><em>, and duration of fever (day). Age, body temperature, pulse, platelets, and duration of fever is a component of parametric and nonparametric hematocrit is a component. Bandwidth (h) the optimal minimum GCV obtained based on the criteria of 0</em><em>,</em><em>005. MSE value is generated using multiple linear regression analysis of 0,031. While the semiparametric regression of 0</em><em>,</em><em>00437119.</em><em></em></p>
topic Semiparametric Regression
Kernel
Bandwidth
GCV
url http://ojs.unud.ac.id/index.php/mtk/article/view/16639
work_keys_str_mv AT annafitriani estimasimodelregresisemiparametrikmenggunakanestimatorkerneluniformstudikasuspasiendbddirspuriraharja
AT igustiayumadesrinadi estimasimodelregresisemiparametrikmenggunakanestimatorkerneluniformstudikasuspasiendbddirspuriraharja
AT madesusilawati estimasimodelregresisemiparametrikmenggunakanestimatorkerneluniformstudikasuspasiendbddirspuriraharja
_version_ 1725856985942851584