Numerical and experimental investigation on the effect of retrograde vaporization on fines migration and drift in porous oil reservoir: roles of phase change heat transfer and saturation

Abstract Retrograde vaporization effects on oil production are nearly unprecedented to reservoir engineering community, and its relation to formation damage should be explored. For this purpose, this paper elucidates the importance and role of this phenomenon and its phase change heat transfer (PCHT...

Full description

Bibliographic Details
Main Authors: B. Kanimozhi, Jaya Prakash, R. Venkat Pranesh, S. Mahalingam
Format: Article
Language:English
Published: SpringerOpen 2019-05-01
Series:Journal of Petroleum Exploration and Production Technology
Subjects:
Online Access:http://link.springer.com/article/10.1007/s13202-019-0692-z
id doaj-1a4906eae04d42e9a2790380a366aa00
record_format Article
spelling doaj-1a4906eae04d42e9a2790380a366aa002020-11-25T03:48:15ZengSpringerOpenJournal of Petroleum Exploration and Production Technology2190-05582190-05662019-05-01942953296310.1007/s13202-019-0692-zNumerical and experimental investigation on the effect of retrograde vaporization on fines migration and drift in porous oil reservoir: roles of phase change heat transfer and saturationB. Kanimozhi0Jaya Prakash1R. Venkat Pranesh2S. Mahalingam3Department of Mechanical and Production Engineering, Sathyabama Institute of Science and TechnologyDepartment of Mechanical and Production Engineering, Sathyabama Institute of Science and TechnologyMinerals and Inorganic Chemicals DivisionHeat Power Laboratory, Sona College of TechnologyAbstract Retrograde vaporization effects on oil production are nearly unprecedented to reservoir engineering community, and its relation to formation damage should be explored. For this purpose, this paper elucidates the importance and role of this phenomenon and its phase change heat transfer (PCHT) on fines migration and subsequent, permeability damage in porous rocks bearing oil and gas. Initially, a fine particle energy conversion equation was successfully acquired by combining fine particle mass balance and general energy equations. Moreover, the computational fluid dynamic model (CFD) was adopted for performing numerical modeling. A 2D CFD model using FEA-Comsol 5.0 version was used to simulate the retrograde vaporization of reservoir fluids. Pore walls are designed as non-adiabatic, and therefore, a modified Dittus-Boelter mass transfer model is provided for a fine particle detachment under PCHT. Hence, from the simulation results it was observed that there is a high degree of heat release during reservoir fluid phase change that is from oil to gas for decreasing pressure and increasing saturation time. This heat transfer from the oil and gas influxes contributes in the expulsion and migration of in situ fines in porous media. Also, an increasing rate of enthalpy was achieved that produces a non-isentropic flow, which is required to mobilize the fines in porous medium, and a satisfactory phase transition simulation outputs were obtained and presented as well. Altogether, these factors play a significant role in the fine particle eviction from the pore chamber, thereby plugging in the pore throat and consequently, decreasing the well productivity during transient flow.http://link.springer.com/article/10.1007/s13202-019-0692-zRetrograde vaporizationFines migrationPhase change heat transferArc lengthEnthalpy
collection DOAJ
language English
format Article
sources DOAJ
author B. Kanimozhi
Jaya Prakash
R. Venkat Pranesh
S. Mahalingam
spellingShingle B. Kanimozhi
Jaya Prakash
R. Venkat Pranesh
S. Mahalingam
Numerical and experimental investigation on the effect of retrograde vaporization on fines migration and drift in porous oil reservoir: roles of phase change heat transfer and saturation
Journal of Petroleum Exploration and Production Technology
Retrograde vaporization
Fines migration
Phase change heat transfer
Arc length
Enthalpy
author_facet B. Kanimozhi
Jaya Prakash
R. Venkat Pranesh
S. Mahalingam
author_sort B. Kanimozhi
title Numerical and experimental investigation on the effect of retrograde vaporization on fines migration and drift in porous oil reservoir: roles of phase change heat transfer and saturation
title_short Numerical and experimental investigation on the effect of retrograde vaporization on fines migration and drift in porous oil reservoir: roles of phase change heat transfer and saturation
title_full Numerical and experimental investigation on the effect of retrograde vaporization on fines migration and drift in porous oil reservoir: roles of phase change heat transfer and saturation
title_fullStr Numerical and experimental investigation on the effect of retrograde vaporization on fines migration and drift in porous oil reservoir: roles of phase change heat transfer and saturation
title_full_unstemmed Numerical and experimental investigation on the effect of retrograde vaporization on fines migration and drift in porous oil reservoir: roles of phase change heat transfer and saturation
title_sort numerical and experimental investigation on the effect of retrograde vaporization on fines migration and drift in porous oil reservoir: roles of phase change heat transfer and saturation
publisher SpringerOpen
series Journal of Petroleum Exploration and Production Technology
issn 2190-0558
2190-0566
publishDate 2019-05-01
description Abstract Retrograde vaporization effects on oil production are nearly unprecedented to reservoir engineering community, and its relation to formation damage should be explored. For this purpose, this paper elucidates the importance and role of this phenomenon and its phase change heat transfer (PCHT) on fines migration and subsequent, permeability damage in porous rocks bearing oil and gas. Initially, a fine particle energy conversion equation was successfully acquired by combining fine particle mass balance and general energy equations. Moreover, the computational fluid dynamic model (CFD) was adopted for performing numerical modeling. A 2D CFD model using FEA-Comsol 5.0 version was used to simulate the retrograde vaporization of reservoir fluids. Pore walls are designed as non-adiabatic, and therefore, a modified Dittus-Boelter mass transfer model is provided for a fine particle detachment under PCHT. Hence, from the simulation results it was observed that there is a high degree of heat release during reservoir fluid phase change that is from oil to gas for decreasing pressure and increasing saturation time. This heat transfer from the oil and gas influxes contributes in the expulsion and migration of in situ fines in porous media. Also, an increasing rate of enthalpy was achieved that produces a non-isentropic flow, which is required to mobilize the fines in porous medium, and a satisfactory phase transition simulation outputs were obtained and presented as well. Altogether, these factors play a significant role in the fine particle eviction from the pore chamber, thereby plugging in the pore throat and consequently, decreasing the well productivity during transient flow.
topic Retrograde vaporization
Fines migration
Phase change heat transfer
Arc length
Enthalpy
url http://link.springer.com/article/10.1007/s13202-019-0692-z
work_keys_str_mv AT bkanimozhi numericalandexperimentalinvestigationontheeffectofretrogradevaporizationonfinesmigrationanddriftinporousoilreservoirrolesofphasechangeheattransferandsaturation
AT jayaprakash numericalandexperimentalinvestigationontheeffectofretrogradevaporizationonfinesmigrationanddriftinporousoilreservoirrolesofphasechangeheattransferandsaturation
AT rvenkatpranesh numericalandexperimentalinvestigationontheeffectofretrogradevaporizationonfinesmigrationanddriftinporousoilreservoirrolesofphasechangeheattransferandsaturation
AT smahalingam numericalandexperimentalinvestigationontheeffectofretrogradevaporizationonfinesmigrationanddriftinporousoilreservoirrolesofphasechangeheattransferandsaturation
_version_ 1724499412799979520