A Hybrid Time-Frequency Analysis Method for Railway Rolling-Element Bearing Fault Diagnosis

The health condition of rolling-element bearings is important for machine performance and operating safety. Due to external interferences, the impulse-related fault information is always buried in the raw vibration signal. To solve this problem, a hybrid time-frequency analysis method combining ense...

Full description

Bibliographic Details
Main Authors: Yao Cheng, Dong Zou, Weihua Zhang, Zhiwei Wang
Format: Article
Language:English
Published: Hindawi Limited 2019-01-01
Series:Journal of Sensors
Online Access:http://dx.doi.org/10.1155/2019/8498496
Description
Summary:The health condition of rolling-element bearings is important for machine performance and operating safety. Due to external interferences, the impulse-related fault information is always buried in the raw vibration signal. To solve this problem, a hybrid time-frequency analysis method combining ensemble local mean decomposition (ELMD) and the Teager-Kaiser energy operator (TKEO) is proposed for the fault diagnosis of high-speed train bearings. The ELMD method is a significant improvement over local mean decomposition (LMD) for addressing the mode-mixing problem. The TKEO method is effective for separating amplitude-modulated (AM) and frequency-modulated (FM) signals from a raw signal. But it is only valid for monocomponent AM-FM signals. The proposed time-frequency method integrates the advantages of ELMD and TKEO to detect localized defects in rolling-element bearings. First, a raw signal is decomposed into an ensemble of PFs and a residual component using ELMD. A novel sensitive parameter (SP) is introduced to select the sensitive PF that contains the most fault-related information. Subsequently, the TKEO is applied to extract both the amplitude and frequency modulations from the selected PF. The experimental results of rolling element and outer race fault signals confirmed that the proposed method could effectively recover fault information from raw signals contaminated by strong noise and other interferences.
ISSN:1687-725X
1687-7268