A Novel Mechanical Metamaterial Exhibiting Auxetic Behavior and Negative Compressibility

Auxetics (negative Poisson’s ratio) and materials with negative linear compressibility (NLC) exhibit the anomalous mechanical properties of getting wider rather than thinner when stretched and expanding in at least one direction under hydrostatic pressure, respectively. A novel mechanism&a...

Full description

Bibliographic Details
Main Authors: James N. Grima-Cornish, Joseph N. Grima, Daphne Attard
Format: Article
Language:English
Published: MDPI AG 2019-12-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/13/1/79
Description
Summary:Auxetics (negative Poisson’s ratio) and materials with negative linear compressibility (NLC) exhibit the anomalous mechanical properties of getting wider rather than thinner when stretched and expanding in at least one direction under hydrostatic pressure, respectively. A novel mechanism—termed the ‘triangular elongation mechanism’—leading to such anomalous behavior is presented and discussed through an analytical model. Amongst other things, it is shown that this novel mechanism, when combined with the well-known ‘rotating squares’ model, can generate giant negative Poisson’s ratios when the system is stretched.
ISSN:1996-1944