Whole Genome Amplification of Day 3 or Day 5 Human Embryos Biopsies Provides a Suitable DNA Template for PCR-Based Techniques for Genotyping, a Complement of Preimplantation Genetic Testing

Our objective was to determine if whole genome amplification (WGA) provides suitable DNA for qPCR-based genotyping for human embryos. Single blastomeres (Day 3) or trophoblastic cells (Day 5) were isolated from 342 embryos for WGA. Comparative Genomic Hybridization determined embryo sex as well as T...

Full description

Bibliographic Details
Main Authors: Elizabeth Schaeffer, Bruno López-Bayghen, Adina Neumann, Leonardo M. Porchia, Rafael Camacho, Efraín Garrido, Rocío Gómez, Felipe Camargo, Esther López-Bayghen
Format: Article
Language:English
Published: Hindawi Limited 2017-01-01
Series:BioMed Research International
Online Access:http://dx.doi.org/10.1155/2017/1209158
Description
Summary:Our objective was to determine if whole genome amplification (WGA) provides suitable DNA for qPCR-based genotyping for human embryos. Single blastomeres (Day 3) or trophoblastic cells (Day 5) were isolated from 342 embryos for WGA. Comparative Genomic Hybridization determined embryo sex as well as Trisomy 18 or Trisomy 21. To determine the embryo’s sex, qPCR melting curve analysis for SRY and DYS14 was used. Logistic regression indicated a 4.4%, 57.1%, or 98.8% probability of a male embryo when neither gene, SRY only, or both genes were detected, respectively (accuracy = 94.1%, kappa = 0.882, and p<0.001). Fluorescent Capillary Electrophoresis for the amelogenin genes (AMEL) was also used to determine sex. AMELY peak’s height was higher and this peak’s presence was highly predictive of male embryos (AUC = 0.93, accuracy = 81.7%, kappa = 0.974, and p<0.001). Trisomy 18 and Trisomy 21 were determined using the threshold cycle difference for RPL17 and TTC3, respectively, which were significantly lower in the corresponding embryos. The Ct difference for TTC3 specifically determined Trisomy 21 (AUC = 0.89) and RPL17 for Trisomy 18 (AUC = 0.94). Here, WGA provides adequate DNA for PCR-based techniques for preimplantation genotyping.
ISSN:2314-6133
2314-6141