Exploration of Free Energy Surface and Thermal Effects on Relative Population and Infrared Spectrum of the Be<sub>6</sub>B<sub>11</sub><sup>−</sup> Flux-Ional Cluster

The starting point to understanding cluster properties is the putative global minimum and all the nearby local energy minima; however, locating them is computationally expensive and difficult. The relative populations and spectroscopic properties that are a function of temperature can be approximate...

Full description

Bibliographic Details
Main Authors: Carlos Emilano Buelna-Garcia, José Luis Cabellos, Jesus Manuel Quiroz-Castillo, Gerardo Martinez-Guajardo, Cesar Castillo-Quevedo, Aned de-Leon-Flores, Gilberto Anzueto-Sanchez, Martha Fabiola Martin-del-Campo-Solis
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/14/1/112
id doaj-2cc6b02a5b3240b6be5c3c48b9787754
record_format Article
spelling doaj-2cc6b02a5b3240b6be5c3c48b97877542020-12-30T00:04:31ZengMDPI AGMaterials1996-19442021-12-011411211210.3390/ma14010112Exploration of Free Energy Surface and Thermal Effects on Relative Population and Infrared Spectrum of the Be<sub>6</sub>B<sub>11</sub><sup>−</sup> Flux-Ional ClusterCarlos Emilano Buelna-Garcia0José Luis Cabellos1Jesus Manuel Quiroz-Castillo2Gerardo Martinez-Guajardo3Cesar Castillo-Quevedo4Aned de-Leon-Flores5Gilberto Anzueto-Sanchez6Martha Fabiola Martin-del-Campo-Solis7Departamento de Investigación en Polímeros y Materiales, Edificio 3G, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Centro, Hermosillo 83000, MexicoDepartamento de Investigación en Fisica, Edifcio 3M, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Centro, Hermosillo 83000, MexicoDepartamento de Investigación en Polímeros y Materiales, Edificio 3G, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Centro, Hermosillo 83000, MexicoUnidad Académica de Ciencias Químicas, Área de Ciencias de la Salud, Universidad Autónoma de Zacatecas, Km. 6 carretera Zacatecas-Guadalajara s/n, Ejido La Escondida, Zacatecas 98160, MexicoDepartamento de Fundamentos del Conocimiento, Centro Universitario del Norte, Universidad de Guadalajara, Carretera Federal No. 23, Km. 191, Colotlán 46200, MexicoDepartamento de Ciencias Quimico Biologicas, Edifico 5A, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Centro, Hermosillo 83000, MexicoCentro de Investigaciones en Óptica, A.C., León 37150, MexicoDepartamento de Fundamentos del Conocimiento, Centro Universitario del Norte, Universidad de Guadalajara, Carretera Federal No. 23, Km. 191, Colotlán 46200, MexicoThe starting point to understanding cluster properties is the putative global minimum and all the nearby local energy minima; however, locating them is computationally expensive and difficult. The relative populations and spectroscopic properties that are a function of temperature can be approximately computed by employing statistical thermodynamics. Here, we investigate entropy-driven isomers distribution on Be<sub>6</sub>B<sub>11</sub><sup>−</sup> clusters and the effect of temperature on their infrared spectroscopy and relative populations. We identify the vibration modes possessed by the cluster that significantly contribute to the zero-point energy. A couple of steps are considered for computing the temperature-dependent relative population: First, using a genetic algorithm coupled to density functional theory, we performed an extensive and systematic exploration of the potential/free energy surface of Be<sub>6</sub>B<sub>11</sub><sup>−</sup> clusters to locate the putative global minimum and elucidate the low-energy structures. Second, the relative populations’ temperature effects are determined by considering the thermodynamic properties and Boltzmann factors. The temperature-dependent relative populations show that the entropies and temperature are essential for determining the global minimum. We compute the temperature-dependent total infrared spectra employing the Boltzmann factor weighted sums of each isomer’s infrared spectrum and find that at finite temperature, the total infrared spectrum is composed of an admixture of infrared spectra that corresponds to the spectra of the lowest-energy structure and its isomers located at higher energies. The methodology and results describe the thermal effects in the relative population and the infrared spectra.https://www.mdpi.com/1996-1944/14/1/112global minimuminfrared spectrumboron clusterfluxionaldensity functional theorytemperature
collection DOAJ
language English
format Article
sources DOAJ
author Carlos Emilano Buelna-Garcia
José Luis Cabellos
Jesus Manuel Quiroz-Castillo
Gerardo Martinez-Guajardo
Cesar Castillo-Quevedo
Aned de-Leon-Flores
Gilberto Anzueto-Sanchez
Martha Fabiola Martin-del-Campo-Solis
spellingShingle Carlos Emilano Buelna-Garcia
José Luis Cabellos
Jesus Manuel Quiroz-Castillo
Gerardo Martinez-Guajardo
Cesar Castillo-Quevedo
Aned de-Leon-Flores
Gilberto Anzueto-Sanchez
Martha Fabiola Martin-del-Campo-Solis
Exploration of Free Energy Surface and Thermal Effects on Relative Population and Infrared Spectrum of the Be<sub>6</sub>B<sub>11</sub><sup>−</sup> Flux-Ional Cluster
Materials
global minimum
infrared spectrum
boron cluster
fluxional
density functional theory
temperature
author_facet Carlos Emilano Buelna-Garcia
José Luis Cabellos
Jesus Manuel Quiroz-Castillo
Gerardo Martinez-Guajardo
Cesar Castillo-Quevedo
Aned de-Leon-Flores
Gilberto Anzueto-Sanchez
Martha Fabiola Martin-del-Campo-Solis
author_sort Carlos Emilano Buelna-Garcia
title Exploration of Free Energy Surface and Thermal Effects on Relative Population and Infrared Spectrum of the Be<sub>6</sub>B<sub>11</sub><sup>−</sup> Flux-Ional Cluster
title_short Exploration of Free Energy Surface and Thermal Effects on Relative Population and Infrared Spectrum of the Be<sub>6</sub>B<sub>11</sub><sup>−</sup> Flux-Ional Cluster
title_full Exploration of Free Energy Surface and Thermal Effects on Relative Population and Infrared Spectrum of the Be<sub>6</sub>B<sub>11</sub><sup>−</sup> Flux-Ional Cluster
title_fullStr Exploration of Free Energy Surface and Thermal Effects on Relative Population and Infrared Spectrum of the Be<sub>6</sub>B<sub>11</sub><sup>−</sup> Flux-Ional Cluster
title_full_unstemmed Exploration of Free Energy Surface and Thermal Effects on Relative Population and Infrared Spectrum of the Be<sub>6</sub>B<sub>11</sub><sup>−</sup> Flux-Ional Cluster
title_sort exploration of free energy surface and thermal effects on relative population and infrared spectrum of the be<sub>6</sub>b<sub>11</sub><sup>−</sup> flux-ional cluster
publisher MDPI AG
series Materials
issn 1996-1944
publishDate 2021-12-01
description The starting point to understanding cluster properties is the putative global minimum and all the nearby local energy minima; however, locating them is computationally expensive and difficult. The relative populations and spectroscopic properties that are a function of temperature can be approximately computed by employing statistical thermodynamics. Here, we investigate entropy-driven isomers distribution on Be<sub>6</sub>B<sub>11</sub><sup>−</sup> clusters and the effect of temperature on their infrared spectroscopy and relative populations. We identify the vibration modes possessed by the cluster that significantly contribute to the zero-point energy. A couple of steps are considered for computing the temperature-dependent relative population: First, using a genetic algorithm coupled to density functional theory, we performed an extensive and systematic exploration of the potential/free energy surface of Be<sub>6</sub>B<sub>11</sub><sup>−</sup> clusters to locate the putative global minimum and elucidate the low-energy structures. Second, the relative populations’ temperature effects are determined by considering the thermodynamic properties and Boltzmann factors. The temperature-dependent relative populations show that the entropies and temperature are essential for determining the global minimum. We compute the temperature-dependent total infrared spectra employing the Boltzmann factor weighted sums of each isomer’s infrared spectrum and find that at finite temperature, the total infrared spectrum is composed of an admixture of infrared spectra that corresponds to the spectra of the lowest-energy structure and its isomers located at higher energies. The methodology and results describe the thermal effects in the relative population and the infrared spectra.
topic global minimum
infrared spectrum
boron cluster
fluxional
density functional theory
temperature
url https://www.mdpi.com/1996-1944/14/1/112
work_keys_str_mv AT carlosemilanobuelnagarcia explorationoffreeenergysurfaceandthermaleffectsonrelativepopulationandinfraredspectrumofthebesub6subbsub11subsupsupfluxionalcluster
AT joseluiscabellos explorationoffreeenergysurfaceandthermaleffectsonrelativepopulationandinfraredspectrumofthebesub6subbsub11subsupsupfluxionalcluster
AT jesusmanuelquirozcastillo explorationoffreeenergysurfaceandthermaleffectsonrelativepopulationandinfraredspectrumofthebesub6subbsub11subsupsupfluxionalcluster
AT gerardomartinezguajardo explorationoffreeenergysurfaceandthermaleffectsonrelativepopulationandinfraredspectrumofthebesub6subbsub11subsupsupfluxionalcluster
AT cesarcastilloquevedo explorationoffreeenergysurfaceandthermaleffectsonrelativepopulationandinfraredspectrumofthebesub6subbsub11subsupsupfluxionalcluster
AT aneddeleonflores explorationoffreeenergysurfaceandthermaleffectsonrelativepopulationandinfraredspectrumofthebesub6subbsub11subsupsupfluxionalcluster
AT gilbertoanzuetosanchez explorationoffreeenergysurfaceandthermaleffectsonrelativepopulationandinfraredspectrumofthebesub6subbsub11subsupsupfluxionalcluster
AT marthafabiolamartindelcamposolis explorationoffreeenergysurfaceandthermaleffectsonrelativepopulationandinfraredspectrumofthebesub6subbsub11subsupsupfluxionalcluster
_version_ 1724367184924246016