Plasmidic qnrA3 enhances Escherichia coli fitness in absence of antibiotic exposure.

The widespread presence of plasmid-mediated quinolone resistance determinants, particularly qnr genes, has become a current issue. By protecting DNA-gyrase from quinolones, Qnr proteins confer a low level quinolone resistance that is not sufficient to explain their emergence. Since Qnr proteins were...

Full description

Bibliographic Details
Main Authors: Adrien Michon, Nicolas Allou, Françoise Chau, Isabelle Podglajen, Bruno Fantin, Emmanuelle Cambau
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2011-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3168526?pdf=render
id doaj-2cf196a5b6da4030af8f42a637afc5a0
record_format Article
spelling doaj-2cf196a5b6da4030af8f42a637afc5a02020-11-25T02:16:00ZengPublic Library of Science (PLoS)PLoS ONE1932-62032011-01-0169e2455210.1371/journal.pone.0024552Plasmidic qnrA3 enhances Escherichia coli fitness in absence of antibiotic exposure.Adrien MichonNicolas AllouFrançoise ChauIsabelle PodglajenBruno FantinEmmanuelle CambauThe widespread presence of plasmid-mediated quinolone resistance determinants, particularly qnr genes, has become a current issue. By protecting DNA-gyrase from quinolones, Qnr proteins confer a low level quinolone resistance that is not sufficient to explain their emergence. Since Qnr proteins were hypothesized to act as DNA-binding protein regulators, qnr genes could have emerged by providing a selective advantage other than antibiotic resistance. We investigated host fitness of Escherichia coli isogenic strains after acquisition of the qnrA3 gene, inserted either alone onto a small plasmid (pBR322), or harbored on a large conjugative native plasmid, pHe96(qnrA3) found in a clinical isolate. The isogenic strains were derived from the susceptible E. coli CFT073, a virulent B2 group strain known to infect bladder and kidneys in a mouse model of pyelonephritis. In vitro experiments included growth analysis by automatic spectrophotometry and flow cytometry, and competitions with CFU enumeration. In vivo experiments included infection with each strain and pairwise competitions in absence of antimicrobial exposure. As controls for our experiments we used mutations known to reduce fitness (rpsL K42N mutation) or to enhance fitness (tetA deletion in pBR322). E. coli CFT073 transformed with pBRAM(PBR322-qnrA3) had significantly higher maximal OD than E. coli CFT073 transformed with pBR322 or pBR322ΔtetA, and in vivo competitions were more often won by the qnrA3 carrying strain (24 victories vs. 9 loss among 42 competitions, p = 0.001). In contrast, when pHe96(qnrA3) was introduced by conjugation in E. coli CFT073, it exerted a fitness cost shown by an impaired growth observed in vitro and in vivo and a majority of lost competitions (33/35, p<0.0001). In conclusion, qnrA3 acquisition enhanced bacterial fitness, which may explain qnr emergence and suggests a regulation role of qnr. However, fitness was reduced when qnrA3 was inserted onto multidrug-resistant plasmids and this can slow down its dissemination without antibiotic exposure.http://europepmc.org/articles/PMC3168526?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Adrien Michon
Nicolas Allou
Françoise Chau
Isabelle Podglajen
Bruno Fantin
Emmanuelle Cambau
spellingShingle Adrien Michon
Nicolas Allou
Françoise Chau
Isabelle Podglajen
Bruno Fantin
Emmanuelle Cambau
Plasmidic qnrA3 enhances Escherichia coli fitness in absence of antibiotic exposure.
PLoS ONE
author_facet Adrien Michon
Nicolas Allou
Françoise Chau
Isabelle Podglajen
Bruno Fantin
Emmanuelle Cambau
author_sort Adrien Michon
title Plasmidic qnrA3 enhances Escherichia coli fitness in absence of antibiotic exposure.
title_short Plasmidic qnrA3 enhances Escherichia coli fitness in absence of antibiotic exposure.
title_full Plasmidic qnrA3 enhances Escherichia coli fitness in absence of antibiotic exposure.
title_fullStr Plasmidic qnrA3 enhances Escherichia coli fitness in absence of antibiotic exposure.
title_full_unstemmed Plasmidic qnrA3 enhances Escherichia coli fitness in absence of antibiotic exposure.
title_sort plasmidic qnra3 enhances escherichia coli fitness in absence of antibiotic exposure.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2011-01-01
description The widespread presence of plasmid-mediated quinolone resistance determinants, particularly qnr genes, has become a current issue. By protecting DNA-gyrase from quinolones, Qnr proteins confer a low level quinolone resistance that is not sufficient to explain their emergence. Since Qnr proteins were hypothesized to act as DNA-binding protein regulators, qnr genes could have emerged by providing a selective advantage other than antibiotic resistance. We investigated host fitness of Escherichia coli isogenic strains after acquisition of the qnrA3 gene, inserted either alone onto a small plasmid (pBR322), or harbored on a large conjugative native plasmid, pHe96(qnrA3) found in a clinical isolate. The isogenic strains were derived from the susceptible E. coli CFT073, a virulent B2 group strain known to infect bladder and kidneys in a mouse model of pyelonephritis. In vitro experiments included growth analysis by automatic spectrophotometry and flow cytometry, and competitions with CFU enumeration. In vivo experiments included infection with each strain and pairwise competitions in absence of antimicrobial exposure. As controls for our experiments we used mutations known to reduce fitness (rpsL K42N mutation) or to enhance fitness (tetA deletion in pBR322). E. coli CFT073 transformed with pBRAM(PBR322-qnrA3) had significantly higher maximal OD than E. coli CFT073 transformed with pBR322 or pBR322ΔtetA, and in vivo competitions were more often won by the qnrA3 carrying strain (24 victories vs. 9 loss among 42 competitions, p = 0.001). In contrast, when pHe96(qnrA3) was introduced by conjugation in E. coli CFT073, it exerted a fitness cost shown by an impaired growth observed in vitro and in vivo and a majority of lost competitions (33/35, p<0.0001). In conclusion, qnrA3 acquisition enhanced bacterial fitness, which may explain qnr emergence and suggests a regulation role of qnr. However, fitness was reduced when qnrA3 was inserted onto multidrug-resistant plasmids and this can slow down its dissemination without antibiotic exposure.
url http://europepmc.org/articles/PMC3168526?pdf=render
work_keys_str_mv AT adrienmichon plasmidicqnra3enhancesescherichiacolifitnessinabsenceofantibioticexposure
AT nicolasallou plasmidicqnra3enhancesescherichiacolifitnessinabsenceofantibioticexposure
AT francoisechau plasmidicqnra3enhancesescherichiacolifitnessinabsenceofantibioticexposure
AT isabellepodglajen plasmidicqnra3enhancesescherichiacolifitnessinabsenceofantibioticexposure
AT brunofantin plasmidicqnra3enhancesescherichiacolifitnessinabsenceofantibioticexposure
AT emmanuellecambau plasmidicqnra3enhancesescherichiacolifitnessinabsenceofantibioticexposure
_version_ 1724893523928416256