A Novel Biosensor to Detect MicroRNAs Rapidly
δ-free F0F1-ATPase within chromatophore was constructed as a novel biosensor to detect miRNA targets. Specific miRNA probes were linked to each rotary β subunits of F0F1-ATPase. Detection of miRNAs was based on the proton flux change induced by light-driven rotation of δ-free F0F1-ATPase. The hybrid...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2009-01-01
|
Series: | Journal of Sensors |
Online Access: | http://dx.doi.org/10.1155/2009/671896 |
Summary: | δ-free F0F1-ATPase within chromatophore was constructed as a novel biosensor to detect miRNA targets. Specific miRNA probes were linked to each rotary β subunits of F0F1-ATPase. Detection of miRNAs was based on the proton flux change induced by light-driven rotation of δ-free F0F1-ATPase. The hybridization reaction was indicated by changes in the fluorescent intensity of pH-sensitive CdTe quantum dots. Our results showed that the assay was attomole sensitivities (1.2×10−18 mol) to target miRNAs and capable of distinguishing among miRNA family members. Moreover, the method could be used to monitor real-time hybridization without any complicated fabrication before hybridization. Thus, the rotary biosensor is not only sensitive and specific to detect miRNA target but also easy to perform. The δ-free F0F1-ATPase-based rotary biosensor may be a promising tool for the basic research and clinical application of miRNAs. |
---|---|
ISSN: | 1687-725X 1687-7268 |