Remote Sensing-Based Mapping of Senescent Leaf C:N Ratio in the Sundarbans Reserved Forest Using Machine Learning Techniques

Carbon to nitrogen ratio (C:N) of senescent leaf is a crucial functional trait and indicator of litter quality that affects belowground carbon and nitrogen cycles, especially soil decomposition. Although mapping the C:N ratio of fresh mature canopies has been attempted, few studies have attempted to...

Full description

Bibliographic Details
Main Authors: Md Mizanur Rahman, Xunhe Zhang, Imran Ahmed, Zaheer Iqbal, Mojtaba Zeraatpisheh, Mamoru Kanzaki, Ming Xu
Format: Article
Language:English
Published: MDPI AG 2020-04-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/12/9/1375
Description
Summary:Carbon to nitrogen ratio (C:N) of senescent leaf is a crucial functional trait and indicator of litter quality that affects belowground carbon and nitrogen cycles, especially soil decomposition. Although mapping the C:N ratio of fresh mature canopies has been attempted, few studies have attempted to map the C:N ratio of senescent leaves, particularly in mangroves. In this study, four machine learning models (Stochastic Gradient Boosting, SGB; Random Forest, RF; Support Vector Machine, SVM; and Partial Least Square Regression, PLSR) were compared for testing the predictability of using the Landsat TM 5 (LTM5) and Landsat 8 to map spatial and temporal distribution of C:N ratio of senescent leaves in Sundarbans Reserved Forest (SRF), Bangladesh. Surface reflectance of bands, texture metrics of bands and vegetation indices of LTM5 and Landsat 8 yearly composite images were extracted using Google Earth Engine for 2009–2010 and 2019. We found SGB, RF and SVM were significant different from PLSR based on MAE, RMSE, and R<sup>2</sup> (<i>p</i> < 0.05). Our results indicate that remote sensing data, such as Landsat TM data, can be used to map the C:N ratio of senescent leaves in mangroves with reasonable accuracy. We also found that the mangroves had a high spatial variation of C:N ratio and the C:N ratio map developed in the current study can be used for improving the biogeochemical and ecosystem models in the mangroves.
ISSN:2072-4292