EFFECT OF LAYERING PATTERN ON THE DYNAMIC MECHANICAL PROPERTIES AND THERMAL DEGRADATION OF OIL PALM-JUTE FIBERS REINFORCED EPOXY HYBRID COMPOSITE

Dynamic mechanical and thermal analysis of oil palm empty fruit bunches (EFB)/jute fiber reinforced epoxy hybrid composites were carried out. The effect of layering pattern on dynamic mechanical properties (storage modulus (E’), loss modulus (E”), and tan δ) was investigated as a function of tempera...

Full description

Bibliographic Details
Main Authors: M. Jawaid, H. P. S. Abdul Khalil
Format: Article
Language:English
Published: North Carolina State University 2011-04-01
Series:BioResources
Subjects:
Online Access:http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_06_3_2309_Jawaid_A_Layering_Pattern_DMA_Epoxy_Hybrid_Composites/998
Description
Summary:Dynamic mechanical and thermal analysis of oil palm empty fruit bunches (EFB)/jute fiber reinforced epoxy hybrid composites were carried out. The effect of layering pattern on dynamic mechanical properties (storage modulus (E’), loss modulus (E”), and tan δ) was investigated as a function of temperature. The storage modulus (E’) was found to be decreased with temperature in all cases, and hybrid composites had almost the same values of E’ at glass transition temperature (Tg). The tan δ peak height was minimum for jute composites and maximum for epoxy matrix. Layering pattern affected the dynamic mechanical properties of hybrid composites. Cole-Cole analysis was carried out to understand the phase behaviour of the composite samples. Thermogravimetric analysis (TGA) results indicated an increase in thermal stability of pure EFB composite with the incorporation of jute fibers. The overall results showed that hybridization with jute fibers enhanced the dynamic mechanical and thermal properties.
ISSN:1930-2126