Investigation on the glass fiber reinforced geopolymer concrete made of M-sand

This research work investigates the effect of utilization of glass fibers in geopolymer concrete made of Manufactured sand (M-sand) over its fresh and hardened properties and understand the influence of fibers over reducing the brittleness of the matrix. Geopolymer concrete synthesized in this study...

Full description

Bibliographic Details
Main Authors: Chithambar GANESH, M. MUTHUKANNAN
Format: Article
Language:English
Published: Mouloud Mammeri University of Tizi-Ouzou 2019-12-01
Series:Journal of Materials and Engineering Structures
Subjects:
Online Access:http://revue.ummto.dz/index.php/JMES/article/view/2027
Description
Summary:This research work investigates the effect of utilization of glass fibers in geopolymer concrete made of Manufactured sand (M-sand) over its fresh and hardened properties and understand the influence of fibers over reducing the brittleness of the matrix. Geopolymer concrete synthesized in this study is Fly ash- GGBS blend type with optimum molarity cured under heat condition. Fresh property of the fiber reinforced geopolymer concrete was accessed using compaction factor test. Mechanical properties such as compressive strength, split tensile strength, flexural strength, impact strength, ductility factor, first crack toughness, failure crack toughness and ultimate failure toughness were measuredand their results are analyzed and discussed in this work. Later, SEM analysis was carried out over the optimum fiber reinforced geopolymer concrete samples to understand the bonding and the effectiveness of the fiber reinforced geopolymer concrete made of M-sand. Incorporation of glass fiber s proved to be more beneficial and yielded a hybrid concrete with increased strength properties. The performance of fiber s could be measured precisely in increasing the ductility and impact strength. Scanning Electron Microscopy (SEM) analysis showed better bonding between the fiber s and the matrix. This study unleashes an enormous scope for the practical implication of fiber reinforced geopolymer concrete as a building material.
ISSN:2170-127X