DC-Link Voltage Research of Photovoltaic Grid-Connected Inverter Using Improved Active Disturbance Rejection Control

In this paper, a robust DC-link voltage control scheme is proposed to improve the tolerance of photovoltaic (PV) grid-connected inverter to disturbances. The sensitive characteristic of the DC-link voltage complicates the dynamics of the inverter control system and limits its overall performance, es...

Full description

Bibliographic Details
Main Authors: Xuesong Zhou, Qian Liu, Youjie Ma, Bingjie Xie
Format: Article
Language:English
Published: IEEE 2021-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9317850/
Description
Summary:In this paper, a robust DC-link voltage control scheme is proposed to improve the tolerance of photovoltaic (PV) grid-connected inverter to disturbances. The sensitive characteristic of the DC-link voltage complicates the dynamics of the inverter control system and limits its overall performance, especially when uncertain disturbances are considered. To cope with this issue, a voltage controller based on the linear active disturbance rejection control (LADRC) is designed. By exploring the principle of deviation regulation, an improved linear extended state observer (LESO) is established to ensure that the total disturbance can be estimated in a relatively timely manner. The linear state error feedback (LSEF) control law is generated to compensate for the total disturbance, which reduces the plant to approximate the canonical cascaded double integrator. The stability and disturbance rejection capability of the improved LADRC are further analyzed in frequency domain. Finally, theoretical analysis and experimental results confirm the feasibility of the proposed control scheme.
ISSN:2169-3536