The Resistome of Low-Impacted Marine Environments Is Composed by Distant Metallo-β-Lactamases Homologs
The worldwide dispersion and sudden emergence of new antibiotic resistance genes (ARGs) determined the need in uncovering which environment participate most as their source and reservoir. ARGs closely related to those currently found in human pathogens occur in the resistome of anthropogenic impacte...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2018-04-01
|
Series: | Frontiers in Microbiology |
Subjects: | |
Online Access: | http://journal.frontiersin.org/article/10.3389/fmicb.2018.00677/full |
id |
doaj-4bb4a55410b046f390f12fbdfb4e7ce6 |
---|---|
record_format |
Article |
spelling |
doaj-4bb4a55410b046f390f12fbdfb4e7ce62020-11-24T21:03:04ZengFrontiers Media S.A.Frontiers in Microbiology1664-302X2018-04-01910.3389/fmicb.2018.00677317278The Resistome of Low-Impacted Marine Environments Is Composed by Distant Metallo-β-Lactamases HomologsErica L. FonsecaBruno G. N. AndradeAna C. P. VicenteThe worldwide dispersion and sudden emergence of new antibiotic resistance genes (ARGs) determined the need in uncovering which environment participate most as their source and reservoir. ARGs closely related to those currently found in human pathogens occur in the resistome of anthropogenic impacted environments. However, the role of pristine environment as the origin and source of ARGs remains underexplored and controversy, particularly, the marine environments represented by the oceans. Here, due to the ocean nature, we hypothesized that the resistome of this pristine/low-impacted marine environment is represented by distant ARG homologs. To test this hypothesis we performed an in silico analysis on the Global Ocean Sampling (GOS) metagenomic project dataset focusing on the metallo-β-lactamases (MβLs) as the ARG model. MβLs have been a challenge to public health, since they hydrolyze the carbapenems, one of the last therapeutic choice in clinics. Using Hidden Markov Model (HMM) profiles, we were successful in identifying a high diversity of distant MβL homologs, related to the B1, B2, and B3 subclasses. The majority of them were distributed across the Atlantic, Indian, and Pacific Oceans being related to the chromosomally encoded MβL GOB present in Elizabethkingia genus. It was observed only a reduced number of metagenomic sequence homologs related to the acquired MβL enzymes (VIM, SPM-1, and AIM-1) that currently have impact in clinics. Therefore, low antibiotic impacted marine environment, as the ocean, are unlikely the source of ARGs that have been causing enormous threat to the public health.http://journal.frontiersin.org/article/10.3389/fmicb.2018.00677/fullresistomemetallo-β-lactamasesmarine environmentVIMSPM-1distant homolog |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Erica L. Fonseca Bruno G. N. Andrade Ana C. P. Vicente |
spellingShingle |
Erica L. Fonseca Bruno G. N. Andrade Ana C. P. Vicente The Resistome of Low-Impacted Marine Environments Is Composed by Distant Metallo-β-Lactamases Homologs Frontiers in Microbiology resistome metallo-β-lactamases marine environment VIM SPM-1 distant homolog |
author_facet |
Erica L. Fonseca Bruno G. N. Andrade Ana C. P. Vicente |
author_sort |
Erica L. Fonseca |
title |
The Resistome of Low-Impacted Marine Environments Is Composed by Distant Metallo-β-Lactamases Homologs |
title_short |
The Resistome of Low-Impacted Marine Environments Is Composed by Distant Metallo-β-Lactamases Homologs |
title_full |
The Resistome of Low-Impacted Marine Environments Is Composed by Distant Metallo-β-Lactamases Homologs |
title_fullStr |
The Resistome of Low-Impacted Marine Environments Is Composed by Distant Metallo-β-Lactamases Homologs |
title_full_unstemmed |
The Resistome of Low-Impacted Marine Environments Is Composed by Distant Metallo-β-Lactamases Homologs |
title_sort |
resistome of low-impacted marine environments is composed by distant metallo-β-lactamases homologs |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Microbiology |
issn |
1664-302X |
publishDate |
2018-04-01 |
description |
The worldwide dispersion and sudden emergence of new antibiotic resistance genes (ARGs) determined the need in uncovering which environment participate most as their source and reservoir. ARGs closely related to those currently found in human pathogens occur in the resistome of anthropogenic impacted environments. However, the role of pristine environment as the origin and source of ARGs remains underexplored and controversy, particularly, the marine environments represented by the oceans. Here, due to the ocean nature, we hypothesized that the resistome of this pristine/low-impacted marine environment is represented by distant ARG homologs. To test this hypothesis we performed an in silico analysis on the Global Ocean Sampling (GOS) metagenomic project dataset focusing on the metallo-β-lactamases (MβLs) as the ARG model. MβLs have been a challenge to public health, since they hydrolyze the carbapenems, one of the last therapeutic choice in clinics. Using Hidden Markov Model (HMM) profiles, we were successful in identifying a high diversity of distant MβL homologs, related to the B1, B2, and B3 subclasses. The majority of them were distributed across the Atlantic, Indian, and Pacific Oceans being related to the chromosomally encoded MβL GOB present in Elizabethkingia genus. It was observed only a reduced number of metagenomic sequence homologs related to the acquired MβL enzymes (VIM, SPM-1, and AIM-1) that currently have impact in clinics. Therefore, low antibiotic impacted marine environment, as the ocean, are unlikely the source of ARGs that have been causing enormous threat to the public health. |
topic |
resistome metallo-β-lactamases marine environment VIM SPM-1 distant homolog |
url |
http://journal.frontiersin.org/article/10.3389/fmicb.2018.00677/full |
work_keys_str_mv |
AT ericalfonseca theresistomeoflowimpactedmarineenvironmentsiscomposedbydistantmetalloblactamaseshomologs AT brunognandrade theresistomeoflowimpactedmarineenvironmentsiscomposedbydistantmetalloblactamaseshomologs AT anacpvicente theresistomeoflowimpactedmarineenvironmentsiscomposedbydistantmetalloblactamaseshomologs AT ericalfonseca resistomeoflowimpactedmarineenvironmentsiscomposedbydistantmetalloblactamaseshomologs AT brunognandrade resistomeoflowimpactedmarineenvironmentsiscomposedbydistantmetalloblactamaseshomologs AT anacpvicente resistomeoflowimpactedmarineenvironmentsiscomposedbydistantmetalloblactamaseshomologs |
_version_ |
1716774238591909888 |