Pre-Drilling Production Forecasting of Parent and Child Wells Using a 2-Segment Decline Curve Analysis (DCA) Method Based on an Analytical Flow-Cell Model Scaled by a Single Type Well

This paper advances a practical tool for production forecasting, using a 2-segment Decline Curve Analysis (DCA) method, based on an analytical flow-cell model for multi-stage fractured shale wells. The flow-cell model uses a type well and can forecast the production rate and estimated ultimate recov...

Full description

Bibliographic Details
Main Authors: Ruud Weijermars, Kiran Nandlal
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/13/6/1525
Description
Summary:This paper advances a practical tool for production forecasting, using a 2-segment Decline Curve Analysis (DCA) method, based on an analytical flow-cell model for multi-stage fractured shale wells. The flow-cell model uses a type well and can forecast the production rate and estimated ultimate recovery (EUR) of newly planned wells, accounting for changes in completion design (fracture spacing, height, half-length), total well length, and well spacing. The basic equations for the flow-cell model have been derived in two earlier papers, the first one dedicated to well forecasts with fracture down-spacing, the second one to well performance forecasts when inter-well spacing changes (and for wells drilled at different times, to account for parent-child well interaction). The present paper provides a practical workflow, introduces correction parameters to account for acreage quality and fracture treatment quality. Further adjustments to the flow-cell model based 2-segment DCA method are made after history matching field data and numerical reservoir simulations, which indicate that terminal decline is not exponential (<i>b</i> = 0) but hyperbolic (with 0 &lt; <i>b</i>&lt; 1). The timing for the onset of boundary dominated flow was also better constrained, using inputs from a reservoir simulator. The new 2-segment DCA method is applied to real field data from the Eagle Ford Formation. Among the major insights of our analyses are: (1) fracture down-spacing does not increase the long-term EUR, and (2) fracture down-spacing of real wells does not result in the rate increases predicted by either the flow-cell model based 2-segment DCA (or its matching reservoir simulations) with the assumed perfect fractures in the down-spaced well models. Our conclusion is that real wells with down-spaced fracture clusters, involving up to 5000 perforations, are unlikely to develop successful hydraulic fractures from each cluster. The fracture treatment quality factor (TQF) or failure rate (1-TQF) can be estimated by comparing the actual well performance with the well forecast based on the ideal well model (albeit flow-cell model or reservoir model, both history-matched on the type curve).
ISSN:1996-1073