Behavioral modeling of integrated phase-change photonic devices for neuromorphic computing applications

The combination of phase-change materials and integrated photonics has led to the development of new forms of all-optical devices, including photonic memories, arithmetic and logic processors, and synaptic and neuronal mimics. Such devices can be readily fabricated into photonic integrated circuits,...

Full description

Bibliographic Details
Main Authors: Santiago G.-C. Carrillo, Emanuele Gemo, Xuan Li, Nathan Youngblood, Andrew Katumba, Peter Bienstman, Wolfram Pernice, Harish Bhaskaran, C. David Wright
Format: Article
Language:English
Published: AIP Publishing LLC 2019-09-01
Series:APL Materials
Online Access:http://dx.doi.org/10.1063/1.5111840
Description
Summary:The combination of phase-change materials and integrated photonics has led to the development of new forms of all-optical devices, including photonic memories, arithmetic and logic processors, and synaptic and neuronal mimics. Such devices can be readily fabricated into photonic integrated circuits, so potentially delivering large-scale all-optical arithmetic-logic units and neuromorphic processing chips. To facilitate in the design and optimization of such large-scale systems, and to aid in the understanding of device and system performance, fast yet accurate computer models are needed. Here, we describe the development of a behavioral modeling tool that meets such requirements, being capable of essentially instantaneous modeling of the write, erase, and readout performance of various integrated phase-change photonic devices, including those for synaptic and neuronal mimics.
ISSN:2166-532X