Crystal structure of bis{(3,5-dimethylpyrazol-1-yl)dihydro[3-(pyridin-2-yl)pyrazol-1-yl]borato}iron(II)

The structure determination of [Fe(C13H15BN5)2] was undertaken as part of a project on the modification of the recently published spin-crossover (SCO) complex [Fe{H2B(pz)(pypz)}2] (pz = pyrazole, pypz = pyridylpyrazole). To this end, a new ligand was synthesized in which two additional methyl groups...

Full description

Bibliographic Details
Main Authors: Sascha Ossinger, Christian Näther, Felix Tuczek
Format: Article
Language:English
Published: International Union of Crystallography 2020-08-01
Series:Acta Crystallographica Section E: Crystallographic Communications
Subjects:
Online Access:http://scripts.iucr.org/cgi-bin/paper?S2056989020009214
Description
Summary:The structure determination of [Fe(C13H15BN5)2] was undertaken as part of a project on the modification of the recently published spin-crossover (SCO) complex [Fe{H2B(pz)(pypz)}2] (pz = pyrazole, pypz = pyridylpyrazole). To this end, a new ligand was synthesized in which two additional methyl groups are present. Its reaction with iron trifluoromethanesulfonate led to a pure sample of the title compound, as proven by X-ray powder diffraction. The asymmetric unit consists of one complex molecule in a general position. The FeII atom is coordinated by two tridentate N-binding {H2B(3,5-(CH3)2-pz)(pypz)}− ligands. The Fe—N bond lengths range between 2.1222 (13) and 2.3255 (15) Å, compatible with FeII in the high-spin state, which was also confirmed by magnetic measurements. Other than a very weak C—H...N non-classical hydrogen bond linking individual molecules into rows extending parallel to [010], there are no remarkable intermolecular interactions.
ISSN:2056-9890