Some Dissimilarity Measures of Branching Processes and Optimal Decision Making in the Presence of Potential Pandemics

We compute exact values respectively bounds of dissimilarity/distinguishability measures–in the sense of the Kullback-Leibler information distance (relative entropy) and some transforms of more general power divergences and Renyi divergences–between two competing discrete-time <i>Galton-Watson...

Full description

Bibliographic Details
Main Authors: Niels B. Kammerer, Wolfgang Stummer
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/22/8/874
Description
Summary:We compute exact values respectively bounds of dissimilarity/distinguishability measures–in the sense of the Kullback-Leibler information distance (relative entropy) and some transforms of more general power divergences and Renyi divergences–between two competing discrete-time <i>Galton-Watson branching processes with immigration</i> GWI for which the offspring as well as the immigration (importation) is arbitrarily Poisson-distributed; especially, we allow for arbitrary type of extinction-concerning criticality and thus for non-stationarity. We apply this to optimal decision making in the context of the spread of potentially pandemic infectious diseases (such as e.g., the current COVID-19 pandemic), e.g., covering different levels of dangerousness and different kinds of intervention/mitigation strategies. Asymptotic distinguishability behaviour and diffusion limits are investigated, too.
ISSN:1099-4300