Summary: | During HIV-1 infection, immune dysregulation and aberrant lymphocyte functions are well-established characteristics. Cell surface molecules are important for immunological functions and changes in expression can affect lymphocyte effector functions, thereby contributing to pathogenesis and disease progression. In this study we have focused on CD96, a member of the IgG superfamily receptors that have generated increasing recent interest due to their adhesive and co-stimulatory functions in addition to immunoregulatory capacity. CD96 is expressed by both T and NK cells. Although the function of CD96 is not completely elucidated, it has been shown to have adhesive functions and enhance cytotoxicity. Interestingly, CD96 may also have inhibitory functions due to its immunoreceptor tyrosine-based inhibitory motif (ITIM). The clinical significance of CD96 is still comparatively limited although it has been associated with chronic Hepatitis B infection and disease progression. CD96 has not previously been studied in the context of HIV-1 infection, but due to its potential importance in immune regulation and relevance to chronic disease, we examined CD96 expression in relation to HIV-1 pathogenesis. In a cross-sectional analysis, we investigated the CD8(+) T cell expression of CD96 in cohorts of untreated HIV-1 infected adults with high viral loads (non-controllers) and low viral loads ("elite" controllers). We demonstrated that elite controllers have significantly higher CD96 mean fluorescence intensity on CD8(+) T cells compared to HIV-1 non-controllers and CD96 expression was positively associated with CD4(+) T cell counts. Functional assessment showed that CD8(+) T cells lacking CD96 expression represented a population that produced both perforin and IFN-γ following stimulation. Furthermore, CD96 expression on CD8(+) T cells was decreased in presence of lipopolysaccharide in vitro. Overall, these findings indicate that down-regulation of CD96 is an important aspect of HIV-1 pathogenesis and differential expression is related to cell effector functions and HIV-1 disease course.
|