Numerical Simulation Prediction of Erosion Characteristics in a Double-Suction Centrifugal Pump

The double-suction centrifugal pumps installed along the Yellow River in China face serious sediment erosion due to the high sediment content which causes the poor operation efficiency of the pump units. The particle motion characteristics and erosion characteristics in a pump under different flow r...

Full description

Bibliographic Details
Main Authors: Xijie Song, Dunzhe Qi, Lijuan Xu, Yubin Shen, Wei Wang, Zhengwei Wang, Yan Liu
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Processes
Subjects:
Online Access:https://www.mdpi.com/2227-9717/9/9/1483
Description
Summary:The double-suction centrifugal pumps installed along the Yellow River in China face serious sediment erosion due to the high sediment content which causes the poor operation efficiency of the pump units. The particle motion characteristics and erosion characteristics in a pump under different flow rates and different particle concentrations were numerically simulated based on the particle track model of solid-liquid two-phase flow. The results show that the flow rate has a significant effect on the particle tracks and the erosion caused by the particles in the impeller. The total erosion rate is positively correlated with the flow rate, and increases with the increase in flow rate. The vortex and secondary flow in the impeller have obvious influence on the particle trajectory, which increases the particle concentration at the trailing edge of the pressure surface and intensifies the impact erosion in this area. The particles carried by the vortex intensifies the local erosion. The particle concentration mainly affects the erosion rate, but has little effect on the erosion position. The influence of flow rate on pump erosion is greater than that of the particle properties. These results provide a reference for optimization of the design of anti-erosion blades of double-suction pumps and the regulation and operation of pumping stations.
ISSN:2227-9717