The geoid or quasigeoid – which reference surface should be preferred for a national height system?

Most European states use M. S. Molodensky’s concept of normal heights for their height systems with a quasigeoid model as the reference surface, while the rest of the world rely on orthometric heights with the geoid as the zero-level. Considering the advances in data caption and theory for geoid and...

Full description

Bibliographic Details
Main Author: Sjöberg L. E.
Format: Article
Language:English
Published: Sciendo 2013-09-01
Series:Journal of Geodetic Science
Subjects:
Online Access:https://doi.org/10.2478/jogs-2013-0013
Description
Summary:Most European states use M. S. Molodensky’s concept of normal heights for their height systems with a quasigeoid model as the reference surface, while the rest of the world rely on orthometric heights with the geoid as the zero-level. Considering the advances in data caption and theory for geoid and quasigeoid determinations, the question is which system is the best choice for the future. It is reasonable to assume that the latter concept, in contrast to the former, will always suffer from some uncertainty in the topographic density distribution, while Molodensky’s approach to quasigeoid determination has a convergence problem. On the contrary, geoid and quasigeoid models computed by analytical continuation (e.g., rcr technique or KTH method) have no integration problem, and the quasigeoid can always be determined at least as accurate as the geoid. As the numerical instability of the analytical continuation is better controlled in the KTH method vs. the rcr method, we propose that any future height system be based on normal heights with a quasigeoid model computed similar to or directly based on the KTH method (Least squares modification of Stokes formula with additive corrections).
ISSN:2081-9943