Boron removal from water and wastewater using new polystyrene-based resin grafted with glycidol

A divinylbenzene cross-linked polystyrene resin with amine functional groups (Purolite A170) was grafted with glycidol and characterized as a novel sorbent, GLY-resin, for the oxoborate removal from model solutions and post-crystallization lye. The sorption behavior of GLY-resin was investigated usi...

Full description

Bibliographic Details
Main Authors: Joanna Kluczka, Teofil Korolewicz, Maria Zołotajkin, Jakub Adamek
Format: Article
Language:English
Published: Elsevier 2015-09-01
Series:Water Resources and Industry
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2212371715000517
Description
Summary:A divinylbenzene cross-linked polystyrene resin with amine functional groups (Purolite A170) was grafted with glycidol and characterized as a novel sorbent, GLY-resin, for the oxoborate removal from model solutions and post-crystallization lye. The sorption behavior of GLY-resin was investigated using a batch system. The results showed that the sorption was maximal at pH=9.5. The equilibrium was achieved after 24 h. Calculations based on Langmuir model show the monolayer sorption capacity qm=1.3 mg/g and the fitted experimental data chemisorption as a dominating mechanism of boron sorption on GLY-resin. Boron removal from the solution containing 5 mg B/L and post-crystallization lye having a 9.1 mg B/L was 99% and 80% respectively. The thermodynamic calculations indicated the spontaneous and endothermic nature of the sorption process. The pseudo-second-order model adequately described the boron sorption on GLY-resin. Sorption−desorption efficiency was 100%, which means the boron sorption at next cycle did not decrease.
ISSN:2212-3717