Existence of solutions for a scalar conservation law with a flux of low regularity
We prove existence of solutions to Cauchy problem for scalar conservation laws with non-degenerate discontinuous flux $$ \partial_t u+ \hbox{div}f(t,\mathbf{x},u)=s(t,\mathbf{x},u), \quad t\geq 0, \mathbf{x}\in \mathbb{R}^d, $$ where for every $(t,\mathbf{x})\in \mathbb{R}^+\times \mathbb{R}$,...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2016-12-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2016/325/abstr.html |