Modulation of formin processivity by profilin and mechanical tension

Formins are major regulators of actin networks. They enhance actin filament dynamics by remaining processively bound to filament barbed ends. How biochemical and mechanical factors affect formin processivity are open questions. Monitoring individual actin filaments in a microfluidic flow, we report...

Full description

Bibliographic Details
Main Authors: Luyan Cao, Mikael Kerleau, Emiko L. Suzuki, Hugo Wioland, Sandy Jouet, Berengere Guichard, Martin Lenz, Guillaume Romet-Lemonne, Antoine Jegou
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2018-05-01
Series:eLife
Subjects:
Online Access:https://elifesciences.org/articles/34176
id doaj-9c13e5e16b18474eb04a1410d01e1d9b
record_format Article
spelling doaj-9c13e5e16b18474eb04a1410d01e1d9b2021-05-05T15:52:29ZengeLife Sciences Publications LtdeLife2050-084X2018-05-01710.7554/eLife.34176Modulation of formin processivity by profilin and mechanical tensionLuyan Cao0Mikael Kerleau1Emiko L. Suzuki2Hugo Wioland3https://orcid.org/0000-0001-5254-9642Sandy Jouet4Berengere Guichard5Martin Lenz6https://orcid.org/0000-0002-2307-1106Guillaume Romet-Lemonne7https://orcid.org/0000-0002-4938-1065Antoine Jegou8https://orcid.org/0000-0003-0356-3127Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, FranceInstitut Jacques Monod, CNRS, Université Paris Diderot, Paris, FranceInstitut Jacques Monod, CNRS, Université Paris Diderot, Paris, FranceInstitut Jacques Monod, CNRS, Université Paris Diderot, Paris, FranceInstitut Jacques Monod, CNRS, Université Paris Diderot, Paris, FranceInstitut Jacques Monod, CNRS, Université Paris Diderot, Paris, FranceLPTMS, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, FranceInstitut Jacques Monod, CNRS, Université Paris Diderot, Paris, FranceInstitut Jacques Monod, CNRS, Université Paris Diderot, Paris, FranceFormins are major regulators of actin networks. They enhance actin filament dynamics by remaining processively bound to filament barbed ends. How biochemical and mechanical factors affect formin processivity are open questions. Monitoring individual actin filaments in a microfluidic flow, we report that formins mDia1 and mDia2 dissociate faster under higher ionic strength and when actin concentration is increased. Profilin, known to increase the elongation rate of formin-associated filaments, surprisingly decreases the formin dissociation rate, by bringing formin FH1 domains in transient contact with the barbed end. In contrast, piconewton tensile forces applied to actin filaments accelerate formin dissociation by orders of magnitude, largely overcoming profilin-mediated stabilization. We developed a model of formin conformations showing that our data indicates the existence of two different dissociation pathways, with force favoring one over the other. How cells limit formin dissociation under tension is now a key question for future studies.https://elifesciences.org/articles/34176actincytoskeletonmicrofluidicsmechanotransductionforminprofilin
collection DOAJ
language English
format Article
sources DOAJ
author Luyan Cao
Mikael Kerleau
Emiko L. Suzuki
Hugo Wioland
Sandy Jouet
Berengere Guichard
Martin Lenz
Guillaume Romet-Lemonne
Antoine Jegou
spellingShingle Luyan Cao
Mikael Kerleau
Emiko L. Suzuki
Hugo Wioland
Sandy Jouet
Berengere Guichard
Martin Lenz
Guillaume Romet-Lemonne
Antoine Jegou
Modulation of formin processivity by profilin and mechanical tension
eLife
actin
cytoskeleton
microfluidics
mechanotransduction
formin
profilin
author_facet Luyan Cao
Mikael Kerleau
Emiko L. Suzuki
Hugo Wioland
Sandy Jouet
Berengere Guichard
Martin Lenz
Guillaume Romet-Lemonne
Antoine Jegou
author_sort Luyan Cao
title Modulation of formin processivity by profilin and mechanical tension
title_short Modulation of formin processivity by profilin and mechanical tension
title_full Modulation of formin processivity by profilin and mechanical tension
title_fullStr Modulation of formin processivity by profilin and mechanical tension
title_full_unstemmed Modulation of formin processivity by profilin and mechanical tension
title_sort modulation of formin processivity by profilin and mechanical tension
publisher eLife Sciences Publications Ltd
series eLife
issn 2050-084X
publishDate 2018-05-01
description Formins are major regulators of actin networks. They enhance actin filament dynamics by remaining processively bound to filament barbed ends. How biochemical and mechanical factors affect formin processivity are open questions. Monitoring individual actin filaments in a microfluidic flow, we report that formins mDia1 and mDia2 dissociate faster under higher ionic strength and when actin concentration is increased. Profilin, known to increase the elongation rate of formin-associated filaments, surprisingly decreases the formin dissociation rate, by bringing formin FH1 domains in transient contact with the barbed end. In contrast, piconewton tensile forces applied to actin filaments accelerate formin dissociation by orders of magnitude, largely overcoming profilin-mediated stabilization. We developed a model of formin conformations showing that our data indicates the existence of two different dissociation pathways, with force favoring one over the other. How cells limit formin dissociation under tension is now a key question for future studies.
topic actin
cytoskeleton
microfluidics
mechanotransduction
formin
profilin
url https://elifesciences.org/articles/34176
work_keys_str_mv AT luyancao modulationofforminprocessivitybyprofilinandmechanicaltension
AT mikaelkerleau modulationofforminprocessivitybyprofilinandmechanicaltension
AT emikolsuzuki modulationofforminprocessivitybyprofilinandmechanicaltension
AT hugowioland modulationofforminprocessivitybyprofilinandmechanicaltension
AT sandyjouet modulationofforminprocessivitybyprofilinandmechanicaltension
AT berengereguichard modulationofforminprocessivitybyprofilinandmechanicaltension
AT martinlenz modulationofforminprocessivitybyprofilinandmechanicaltension
AT guillaumerometlemonne modulationofforminprocessivitybyprofilinandmechanicaltension
AT antoinejegou modulationofforminprocessivitybyprofilinandmechanicaltension
_version_ 1721459815913357312