Digital Image Correlation Analysis of Displacement Based on Corrected Three Surface Fitting Algorithm
SFA (Surface Fitting Algorithm) for continuous displacement is an important method for digital image correlation with antinoise ability and computational efficiency advantages in practical applications. In order to improve the algorithm accuracy and expand its application range, this paper tries to...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi-Wiley
2019-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2019/4620858 |
Summary: | SFA (Surface Fitting Algorithm) for continuous displacement is an important method for digital image correlation with antinoise ability and computational efficiency advantages in practical applications. In order to improve the algorithm accuracy and expand its application range, this paper tries to improve the SFA and studies the modified cubic surface fitting algorithm CTSFA (Corrected Three Surface Fitting Algorithm), which is suitable for solving the initial value of continuous displacement. Bilinear interpolation and adjacent interpolation are used to analyze the gray level at any integer-pixel position in the displacement matrix and the weight coefficient is given. The distance-weighted method is used to approximate the true initial displacement value of the continuum, and the algorithm suitable for digital image processing is extended to the continuum displacement solution. The cubic surface expression of the CTSFA programmatic application is solved by the least squares method, and the correlation coefficient of the power basis function is calculated. In the computer simulation of speckle test, the comparison between CTSFA and SFA on the calculation results of linear and nonlinear displacement fields shows that the calculated amount of CTSFA is basically the same as that of SFA, but the calculation accuracy is doubled. The study of analysing the Brazilian splitting test using CTSFA and SFA reveals that CTSFA is better than SFA in observing the development of cracks. |
---|---|
ISSN: | 1076-2787 1099-0526 |