Indoor Thermal Comfort Improvement through the Integrated BIM-Parametric Workflow-Based Sustainable Renovation of an Exemplary Apartment in Seoul, Korea

Apartment buildings are the most common housing typology in South Korea. The mass construction of apartment neighborhoods during a period of rapid economic growth (1970−1997) involved the minimization of material use and quality, as well as industrialized construction processes. Accordingl...

Full description

Bibliographic Details
Main Authors: Fabrizio M. Amoruso, Udo Dietrich, Thorsten Schuetze
Format: Article
Language:English
Published: MDPI AG 2019-07-01
Series:Sustainability
Subjects:
Online Access:https://www.mdpi.com/2071-1050/11/14/3950
Description
Summary:Apartment buildings are the most common housing typology in South Korea. The mass construction of apartment neighborhoods during a period of rapid economic growth (1970−1997) involved the minimization of material use and quality, as well as industrialized construction processes. Accordingly, apartment buildings require essential renovation after only 20 years of operation. This study focuses on the improvement of thermal comfort for the renovation of an exemplary apartment building based on an integrated Building Information Modeling (BIM) and parametric software framework. The existing apartment was reconstructed with BIM software, and the virtual model was utilized for a parametric building energy simulation to calculate the thermal comfort condition of occupants during the entire year. The thermal comfort analysis results defined the criteria for the development of an enhanced building envelope system characterized by modular panels. The parametric energy simulation was executed for the renovated apartment condition with the enhanced envelope system, and the thermal comfort improvements were quantified by comparing the results for the apartment condition before and after renovation. This study aims to provide the tools and criteria for the comfort analysis of apartment occupants, as well as propose sustainable solutions for the improvement of thermal comfort in aged buildings with similar conditions, internal distribution, and construction components.
ISSN:2071-1050