Multi-decadal geomorphic changes of a low-angle valley glacier in the East Kunlun Mountains: remote sensing observations and detachment hazard assessment

<p>Detachments of large parts of low-angle mountain glaciers in recent years have raised great attention due to their threats to lives and properties downstream. While current studies have mainly focused on post-event analysis, a few opportunities have presented themselves to assess the potent...

Full description

Bibliographic Details
Main Authors: X. Wang, L. Liu, Y. Hu, T. Wu, L. Zhao, Q. Liu, R. Zhang, B. Zhang, G. Liu
Format: Article
Language:English
Published: Copernicus Publications 2021-09-01
Series:Natural Hazards and Earth System Sciences
Online Access:https://nhess.copernicus.org/articles/21/2791/2021/nhess-21-2791-2021.pdf
id doaj-a2af1c6b9e48476bb177be84d4ef8c12
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author X. Wang
X. Wang
L. Liu
Y. Hu
T. Wu
L. Zhao
L. Zhao
Q. Liu
R. Zhang
R. Zhang
B. Zhang
G. Liu
G. Liu
spellingShingle X. Wang
X. Wang
L. Liu
Y. Hu
T. Wu
L. Zhao
L. Zhao
Q. Liu
R. Zhang
R. Zhang
B. Zhang
G. Liu
G. Liu
Multi-decadal geomorphic changes of a low-angle valley glacier in the East Kunlun Mountains: remote sensing observations and detachment hazard assessment
Natural Hazards and Earth System Sciences
author_facet X. Wang
X. Wang
L. Liu
Y. Hu
T. Wu
L. Zhao
L. Zhao
Q. Liu
R. Zhang
R. Zhang
B. Zhang
G. Liu
G. Liu
author_sort X. Wang
title Multi-decadal geomorphic changes of a low-angle valley glacier in the East Kunlun Mountains: remote sensing observations and detachment hazard assessment
title_short Multi-decadal geomorphic changes of a low-angle valley glacier in the East Kunlun Mountains: remote sensing observations and detachment hazard assessment
title_full Multi-decadal geomorphic changes of a low-angle valley glacier in the East Kunlun Mountains: remote sensing observations and detachment hazard assessment
title_fullStr Multi-decadal geomorphic changes of a low-angle valley glacier in the East Kunlun Mountains: remote sensing observations and detachment hazard assessment
title_full_unstemmed Multi-decadal geomorphic changes of a low-angle valley glacier in the East Kunlun Mountains: remote sensing observations and detachment hazard assessment
title_sort multi-decadal geomorphic changes of a low-angle valley glacier in the east kunlun mountains: remote sensing observations and detachment hazard assessment
publisher Copernicus Publications
series Natural Hazards and Earth System Sciences
issn 1561-8633
1684-9981
publishDate 2021-09-01
description <p>Detachments of large parts of low-angle mountain glaciers in recent years have raised great attention due to their threats to lives and properties downstream. While current studies have mainly focused on post-event analysis, a few opportunities have presented themselves to assess the potential hazards of a glacier prone to detachment. Here we present a comprehensive analysis of the dynamics and runout hazard of a low-angle (<span class="inline-formula">∼20</span><span class="inline-formula"><sup>∘</sup></span>) valley glacier, close to the Qinghai–Tibet railway and highway, in the East Kunlun Mountains on the Qinghai–Tibet Plateau. The changes in morphology, terminus position, and surface elevation of the glacier between 1975 and 2021 were characterized with a stereo-image pair from the historical KH-9 spy satellite, six digital elevation models (DEMs), and 11 high-resolution images from Planet Labs. The surface flow velocities of the glacier tongue between 2009 and 2020 were also tracked based on cross-correlation of Planet images. Our observations show that the glacier snout has been progressively advancing in the past 4 decades, with a stepwise increase in advance velocity from <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">4.55</mn><mo>±</mo><mn mathvariant="normal">0.46</mn><mspace linebreak="nobreak" width="0.125em"/><mrow class="unit"><mi mathvariant="normal">m</mi><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">a</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="84pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="bafd0064a040ef8132ee6e9a5bec3f5a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="nhess-21-2791-2021-ie00001.svg" width="84pt" height="14pt" src="nhess-21-2791-2021-ie00001.png"/></svg:svg></span></span> between 1975 and 2009 to <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">30.88</mn><mo>±</mo><mn mathvariant="normal">2.36</mn><mspace linebreak="nobreak" width="0.125em"/><mrow class="unit"><mi mathvariant="normal">m</mi><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">a</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="90pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="d09c21c6aa300ba8ccad937e6bdb8bb3"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="nhess-21-2791-2021-ie00002.svg" width="90pt" height="14pt" src="nhess-21-2791-2021-ie00002.png"/></svg:svg></span></span> between 2015 and 2020. DEM differencing confirms the glacial advance, with surface thinning in the source region and thickening in the tongue. The net volume loss over the glacier tongue was about <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">11.21</mn><mo>±</mo><mn mathvariant="normal">2.66</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mn mathvariant="normal">5</mn></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="90pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="4add3998cbdfd3cb34b274ef8c098773"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="nhess-21-2791-2021-ie00003.svg" width="90pt" height="13pt" src="nhess-21-2791-2021-ie00003.png"/></svg:svg></span></span> <span class="inline-formula">m<sup>3</sup></span> during 1975–2018. Image cross-correlation reveals that the surface flow velocity of the glacier tongue has been increasing in recent years, with the mean velocity below 4800 <span class="inline-formula">m</span> more than tripling from <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">6.3</mn><mo>±</mo><mn mathvariant="normal">1.8</mn><mspace width="0.125em" linebreak="nobreak"/><mrow class="unit"><mi mathvariant="normal">m</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">a</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="72pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="fa7c0876d4f422a3e28776f95e099fcb"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="nhess-21-2791-2021-ie00004.svg" width="72pt" height="14pt" src="nhess-21-2791-2021-ie00004.png"/></svg:svg></span></span> during 2009–2010 to <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">22.3</mn><mo>±</mo><mn mathvariant="normal">3.2</mn><mspace linebreak="nobreak" width="0.125em"/><mrow class="unit"><mi mathvariant="normal">m</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">a</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="78pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="c1144a6b820f32500000d6dede558697"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="nhess-21-2791-2021-ie00005.svg" width="78pt" height="14pt" src="nhess-21-2791-2021-ie00005.png"/></svg:svg></span></span> during 2019–2020. With a combined analysis of the geomorphic, climatic, and hydrologic conditions of the glacier, we suggest that the flow of the glacier tongue is mainly controlled by the glacier geometry, while the presence of an ice-dammed lake and a supraglacial pond implies a hydrological influence as well. Taking the whole glacier and glacier tongue as two endmember avalanche sources, we assessed the potential runout distances of these two scenarios using the angle of reach and the Voellmy–Salm avalanche model. The assessments show that the avalanche of the whole glacier would easily travel a distance that would threaten the safety of the railway. In contrast, the detachment of the glacier tongue would threaten the railway only with a small angle of reach or when employing a low-friction parameter in the Voellmy–Salm modeling.</p>
url https://nhess.copernicus.org/articles/21/2791/2021/nhess-21-2791-2021.pdf
work_keys_str_mv AT xwang multidecadalgeomorphicchangesofalowanglevalleyglacierintheeastkunlunmountainsremotesensingobservationsanddetachmenthazardassessment
AT xwang multidecadalgeomorphicchangesofalowanglevalleyglacierintheeastkunlunmountainsremotesensingobservationsanddetachmenthazardassessment
AT lliu multidecadalgeomorphicchangesofalowanglevalleyglacierintheeastkunlunmountainsremotesensingobservationsanddetachmenthazardassessment
AT yhu multidecadalgeomorphicchangesofalowanglevalleyglacierintheeastkunlunmountainsremotesensingobservationsanddetachmenthazardassessment
AT twu multidecadalgeomorphicchangesofalowanglevalleyglacierintheeastkunlunmountainsremotesensingobservationsanddetachmenthazardassessment
AT lzhao multidecadalgeomorphicchangesofalowanglevalleyglacierintheeastkunlunmountainsremotesensingobservationsanddetachmenthazardassessment
AT lzhao multidecadalgeomorphicchangesofalowanglevalleyglacierintheeastkunlunmountainsremotesensingobservationsanddetachmenthazardassessment
AT qliu multidecadalgeomorphicchangesofalowanglevalleyglacierintheeastkunlunmountainsremotesensingobservationsanddetachmenthazardassessment
AT rzhang multidecadalgeomorphicchangesofalowanglevalleyglacierintheeastkunlunmountainsremotesensingobservationsanddetachmenthazardassessment
AT rzhang multidecadalgeomorphicchangesofalowanglevalleyglacierintheeastkunlunmountainsremotesensingobservationsanddetachmenthazardassessment
AT bzhang multidecadalgeomorphicchangesofalowanglevalleyglacierintheeastkunlunmountainsremotesensingobservationsanddetachmenthazardassessment
AT gliu multidecadalgeomorphicchangesofalowanglevalleyglacierintheeastkunlunmountainsremotesensingobservationsanddetachmenthazardassessment
AT gliu multidecadalgeomorphicchangesofalowanglevalleyglacierintheeastkunlunmountainsremotesensingobservationsanddetachmenthazardassessment
_version_ 1717380964425924608
spelling doaj-a2af1c6b9e48476bb177be84d4ef8c122021-09-13T11:59:11ZengCopernicus PublicationsNatural Hazards and Earth System Sciences1561-86331684-99812021-09-01212791281010.5194/nhess-21-2791-2021Multi-decadal geomorphic changes of a low-angle valley glacier in the East Kunlun Mountains: remote sensing observations and detachment hazard assessmentX. Wang0X. Wang1L. Liu2Y. Hu3T. Wu4L. Zhao5L. Zhao6Q. Liu7R. Zhang8R. Zhang9B. Zhang10G. Liu11G. Liu12Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, ChinaState-Province Joint Engineering Laboratory of Spatial Information Technology of High-speed Rail Safety, Southwest Jiaotong University, Chengdu, ChinaEarth System Science Programme, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, ChinaEarth System Science Programme, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, ChinaCryosphere Research Station on the Qinghai–Tibet Plateau, State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, ChinaCryosphere Research Station on the Qinghai–Tibet Plateau, State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, ChinaSchool of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing, ChinaInstitute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, ChinaFaculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, ChinaState-Province Joint Engineering Laboratory of Spatial Information Technology of High-speed Rail Safety, Southwest Jiaotong University, Chengdu, ChinaFaculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, ChinaFaculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, ChinaState-Province Joint Engineering Laboratory of Spatial Information Technology of High-speed Rail Safety, Southwest Jiaotong University, Chengdu, China<p>Detachments of large parts of low-angle mountain glaciers in recent years have raised great attention due to their threats to lives and properties downstream. While current studies have mainly focused on post-event analysis, a few opportunities have presented themselves to assess the potential hazards of a glacier prone to detachment. Here we present a comprehensive analysis of the dynamics and runout hazard of a low-angle (<span class="inline-formula">∼20</span><span class="inline-formula"><sup>∘</sup></span>) valley glacier, close to the Qinghai–Tibet railway and highway, in the East Kunlun Mountains on the Qinghai–Tibet Plateau. The changes in morphology, terminus position, and surface elevation of the glacier between 1975 and 2021 were characterized with a stereo-image pair from the historical KH-9 spy satellite, six digital elevation models (DEMs), and 11 high-resolution images from Planet Labs. The surface flow velocities of the glacier tongue between 2009 and 2020 were also tracked based on cross-correlation of Planet images. Our observations show that the glacier snout has been progressively advancing in the past 4 decades, with a stepwise increase in advance velocity from <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">4.55</mn><mo>±</mo><mn mathvariant="normal">0.46</mn><mspace linebreak="nobreak" width="0.125em"/><mrow class="unit"><mi mathvariant="normal">m</mi><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">a</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="84pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="bafd0064a040ef8132ee6e9a5bec3f5a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="nhess-21-2791-2021-ie00001.svg" width="84pt" height="14pt" src="nhess-21-2791-2021-ie00001.png"/></svg:svg></span></span> between 1975 and 2009 to <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">30.88</mn><mo>±</mo><mn mathvariant="normal">2.36</mn><mspace linebreak="nobreak" width="0.125em"/><mrow class="unit"><mi mathvariant="normal">m</mi><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">a</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="90pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="d09c21c6aa300ba8ccad937e6bdb8bb3"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="nhess-21-2791-2021-ie00002.svg" width="90pt" height="14pt" src="nhess-21-2791-2021-ie00002.png"/></svg:svg></span></span> between 2015 and 2020. DEM differencing confirms the glacial advance, with surface thinning in the source region and thickening in the tongue. The net volume loss over the glacier tongue was about <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">11.21</mn><mo>±</mo><mn mathvariant="normal">2.66</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mn mathvariant="normal">5</mn></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="90pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="4add3998cbdfd3cb34b274ef8c098773"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="nhess-21-2791-2021-ie00003.svg" width="90pt" height="13pt" src="nhess-21-2791-2021-ie00003.png"/></svg:svg></span></span> <span class="inline-formula">m<sup>3</sup></span> during 1975–2018. Image cross-correlation reveals that the surface flow velocity of the glacier tongue has been increasing in recent years, with the mean velocity below 4800 <span class="inline-formula">m</span> more than tripling from <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">6.3</mn><mo>±</mo><mn mathvariant="normal">1.8</mn><mspace width="0.125em" linebreak="nobreak"/><mrow class="unit"><mi mathvariant="normal">m</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">a</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="72pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="fa7c0876d4f422a3e28776f95e099fcb"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="nhess-21-2791-2021-ie00004.svg" width="72pt" height="14pt" src="nhess-21-2791-2021-ie00004.png"/></svg:svg></span></span> during 2009–2010 to <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">22.3</mn><mo>±</mo><mn mathvariant="normal">3.2</mn><mspace linebreak="nobreak" width="0.125em"/><mrow class="unit"><mi mathvariant="normal">m</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">a</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="78pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="c1144a6b820f32500000d6dede558697"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="nhess-21-2791-2021-ie00005.svg" width="78pt" height="14pt" src="nhess-21-2791-2021-ie00005.png"/></svg:svg></span></span> during 2019–2020. With a combined analysis of the geomorphic, climatic, and hydrologic conditions of the glacier, we suggest that the flow of the glacier tongue is mainly controlled by the glacier geometry, while the presence of an ice-dammed lake and a supraglacial pond implies a hydrological influence as well. Taking the whole glacier and glacier tongue as two endmember avalanche sources, we assessed the potential runout distances of these two scenarios using the angle of reach and the Voellmy–Salm avalanche model. The assessments show that the avalanche of the whole glacier would easily travel a distance that would threaten the safety of the railway. In contrast, the detachment of the glacier tongue would threaten the railway only with a small angle of reach or when employing a low-friction parameter in the Voellmy–Salm modeling.</p>https://nhess.copernicus.org/articles/21/2791/2021/nhess-21-2791-2021.pdf