Heat Shock Protein 90 in Alzheimer’s Disease

Alzheimer’s disease (AD) is the first most common neurodegenerative disease. Despite a large amount of research, the pathogenetic mechanism of AD has not yet been clarified. The two hallmarks of the pathology of AD are the extracellular senile plaques (SPs) of aggregated amyloid-beta (Aβ) peptide an...

Full description

Bibliographic Details
Main Authors: Jiang-Rong Ou, Meng-Shan Tan, An-Mu Xie, Jin-Tai Yu, Lan Tan
Format: Article
Language:English
Published: Hindawi Limited 2014-01-01
Series:BioMed Research International
Online Access:http://dx.doi.org/10.1155/2014/796869
Description
Summary:Alzheimer’s disease (AD) is the first most common neurodegenerative disease. Despite a large amount of research, the pathogenetic mechanism of AD has not yet been clarified. The two hallmarks of the pathology of AD are the extracellular senile plaques (SPs) of aggregated amyloid-beta (Aβ) peptide and the accumulation of the intracellular microtubule-associated protein tau into fibrillar aggregates. Heat shock proteins (HSPs) play a key role in preventing protein misfolding and aggregation, and Hsp90 can be viewed as a ubiquitous molecular chaperone potentially involved in AD pathogenesis. A role of Hsp90 regulates the activity of the transcription factor heat shock factor-1 (HSF-1), the master regulator of the heat shock response. In AD, Hsp90 inhibitors may redirect neuronal aggregate formation, and protect against protein toxicity by activation of HSF-1 and the subsequent induction of heat shock proteins, such as Hsp70. Therefore, we review here to further discuss the recent advances and challenges in targeting Hsp90 for AD therapy.
ISSN:2314-6133
2314-6141