One‐Step 3D Printing of Heart Patches with Built‐In Electronics for Performance Regulation

Abstract Three dimensional (3D) printing of heart patches usually provides the ability to precisely control cell location in 3D space. Here, one‐step 3D printing of cardiac patches with built‐in soft and stretchable electronics is reported. The tissue is simultaneously printed using three distinct b...

Full description

Bibliographic Details
Main Authors: Masha Asulin, Idan Michael, Assaf Shapira, Tal Dvir
Format: Article
Language:English
Published: Wiley 2021-05-01
Series:Advanced Science
Subjects:
Online Access:https://doi.org/10.1002/advs.202004205
Description
Summary:Abstract Three dimensional (3D) printing of heart patches usually provides the ability to precisely control cell location in 3D space. Here, one‐step 3D printing of cardiac patches with built‐in soft and stretchable electronics is reported. The tissue is simultaneously printed using three distinct bioinks for the cells, for the conducting parts of the electronics and for the dielectric components. It is shown that the hybrid system can withstand continuous physical deformations as those taking place in the contracting myocardium. The electronic patch is flexible, stretchable, and soft, and the electrodes within the printed patch are able to monitor the function of the engineered tissue by providing extracellular potentials. Furthermore, the system allowed controlling tissue function by providing electrical stimulation for pacing. It is envisioned that such transplantable patches may regain heart contractility and allow the physician to monitor the implant function as well as to efficiently intervene from afar when needed.
ISSN:2198-3844