Resilience modeling concepts in transportation systems: a comprehensive review based on mode, and modeling techniques

Abstract The objective of this comprehensive review study was to compile a state-of-the-art understanding of the resilience of the transportation system due to natural and man-made disasters. This study identified resilience measurement parameters that can be used to formulate resilience quantificat...

Full description

Bibliographic Details
Main Authors: Shofiq Ahmed, Kakan Dey
Format: Article
Language:English
Published: SpringerOpen 2020-06-01
Series:Journal of Infrastructure Preservation and Resilience
Subjects:
Online Access:http://link.springer.com/article/10.1186/s43065-020-00008-9
Description
Summary:Abstract The objective of this comprehensive review study was to compile a state-of-the-art understanding of the resilience of the transportation system due to natural and man-made disasters. This study identified resilience measurement parameters that can be used to formulate resilience quantification and improvement strategies of a transportation system. Reviewed articles were classified and summarized from two perspectives: (i) modeling based on the mode of transportation; and (ii) modeling based on the mathematical technique used to quantify resilience. One of the unique contributions of this review article is that it compiled the key resilience indices that were analyzed to quantify resilience. This review revealed that the majority of the scholarly articles on the topic of transportation system resilience published since 2006, were focused on the resilience of the roadway-based transportation system, and vulnerability was one of the most explored resilience indices in evaluating transportation system resilience. Several future research directions were identified considering the implications of emerging transportation technologies (e.g., connected and automated vehicle technology). The complex interdependency among critical infrastructure systems such as power, transportation, and communication system, as well as the cybersecurity issues in the advanced intelligent transportation system, will be vital in the resilience analysis of future transportation systems.
ISSN:2662-2521