The development of EMPD model for identifying and predicting the materials' moisture performances

Moisture excess or lack in buildings has many adverse effects on human health, structural durability and building energy consumption, and moisture design for building materials is an important and efficient measurement for creating a stable indoor climate. However, the current quick test method (e.g...

Full description

Bibliographic Details
Main Authors: Cui Yumeng, Zhang Yufeng, Zhao Huihui, Lin Xue
Format: Article
Language:English
Published: EDP Sciences 2020-01-01
Series:E3S Web of Conferences
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2020/32/e3sconf_nsb2020_07009.pdf
Description
Summary:Moisture excess or lack in buildings has many adverse effects on human health, structural durability and building energy consumption, and moisture design for building materials is an important and efficient measurement for creating a stable indoor climate. However, the current quick test method (e.g., moisture buffer value test) can only evaluate the materials' moisture buffering abilities roughly, and the advanced numerical prediction method (e.g., using HAM models) is hardly applicable in practices due to insufficient materials’ hygrothermal properties and its long computing time. EMPD model can calculate with less input parameters and short time without sacrificing accuracy. While this paper found existing EMPD has limited application conditions, and further proposed modified multilayer EMPD model. A new approach can be applied to identify and predict the moisture performances of building materials. In this paper, two typical building materials with diverse hygric properties were simulated. Their key parameters of the modified model was easily inversed by a 24h standard box test instead of several months of material hygrothermal properties tests, based on which, the materials' actual performances under various conditions can be predicted. The presented approach was validated by comparing the numerical predictions with HAM results in the corresponding conditions. This study provides an easy and fast way to test and predict the moisture performances of building materials and indoor moisture in practices.
ISSN:2267-1242