Data on UPLC/MS method validation for the biodegradation of pharmaceuticals and intermediates by a fungal consortium and on T47DK-Bluc reporter gene assay to assess the reduction of their estrogenic activity

In term of pharmaceutical and their intermediate compounds analysis, UPLC/MS method is a valuable equipment to achieve better confirmation on their biodegradation by fungi. The T47D-KBluc reporter gene assay is an appropriate tool to investigate to removal of estrogenic and antiestrogenic activities...

Full description

Bibliographic Details
Main Authors: Teddy Kabeya Kasonga, Martie A.A. Coetzee, Catherina Van Zijl, Maggy Ndombo Benteke Momba
Format: Article
Language:English
Published: Elsevier 2019-08-01
Series:Data in Brief
Online Access:http://www.sciencedirect.com/science/article/pii/S2352340919306900
Description
Summary:In term of pharmaceutical and their intermediate compounds analysis, UPLC/MS method is a valuable equipment to achieve better confirmation on their biodegradation by fungi. The T47D-KBluc reporter gene assay is an appropriate tool to investigate to removal of estrogenic and antiestrogenic activities of pharmaceuticals and their metabolites from a synthetic wastewater. A consortium of isolated South African indigenous fungi Aspergillus niger, Mucor circinelloides, Trichoderma longibrachiatum, Trametes polyzona and Rhizopus microspores was found to perform a removal of pharmaceuticals and their metabolites and to reduce their estrogenic activity below the limit of detection in a sequencing batch reactor. Here are presented data regarding the phenolic compounds list and the method validation for UPLC/MS analysis used for selected pharmaceutical compounds namely carbamazepine, diclofenac, ibuprofen and their metabolites, as well as the T47D-KBluc bioassay using as positive control, the agonist E2 for estrogenic activity and the antagonist ICI 182,780 for antiestrogenic activity. For better understanding of the data presented in this paper, please see the research paper “Removal of pharmaceutical’ estrogenic activity of sequencing batch reactor effluents assessed in the T47DK-Bluc reporter gene assay” [1]. Keywords: Agonist E2, Antagonist ICI 182,780, UPLC/MS method, T47D-KBluc bioassay
ISSN:2352-3409