The Efficiency of the Removal of Naphthalene from Aqueous Solutions by Different Adsorbents
The paper presents the results of laboratory tests on possibilities to utilize active carbons produced in Poland (AG-5 and DTO) and clinoptilolite for removing naphthalene from a water solution in the adsorption process. The concentration of naphthalene in the model solution was 20 mg/dm<sup>3...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-08-01
|
Series: | International Journal of Environmental Research and Public Health |
Subjects: | |
Online Access: | https://www.mdpi.com/1660-4601/17/16/5969 |
Summary: | The paper presents the results of laboratory tests on possibilities to utilize active carbons produced in Poland (AG-5 and DTO) and clinoptilolite for removing naphthalene from a water solution in the adsorption process. The concentration of naphthalene in the model solution was 20 mg/dm<sup>3</sup>. The effects of pH, dose and adsorption time were determined under static conditions. Adsorption kinetics were consistent with the pseudo-second-order model (PSO). Among the applied models, the best fit was obtained using the Langmuir isotherms. The maximum adsorption capacity for the activated carbons (AG-5 and DTO) equaled 24.57 and 30.28 mg/g, respectively. For clinoptilolite, all the analyzed models of adsorption poorly described the adsorption process. The flow conditions were realized by filtration method. On the basis of the obtained results, the breakthrough curves, so-called isoplanes, were prepared and served in turn to determine the adsorption capacities in flow conditions. The total adsorption capacities determined under dynamic conditions of the AG-5 and DTO activated carbons were 85.63 and 94.54 mg/g, respectively, and only 2.72 mg/g for clinoptilolite. The exit curves (isoplanes) were also utilized to determine the mass penetration zone (the adsorption front height), as well as to calculate the rate of mass-exchange zone advance. |
---|---|
ISSN: | 1661-7827 1660-4601 |