Wearables and Internet of Things (IoT) Technologies for Fitness Assessment: A Systematic Review

Wearable and Internet of Things (IoT) technologies in sports open a new era in athlete’s training, not only for performance monitoring and evaluation but also for fitness assessment. These technologies rely on sensor systems that collect, process and transmit relevant data, such as biomarkers and/or...

Full description

Bibliographic Details
Main Authors: João Passos, Sérgio Ivan Lopes, Filipe Manuel Clemente, Pedro Miguel Moreira, Markel Rico-González, Pedro Bezerra, Luís Paulo Rodrigues
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Sensors
Subjects:
IoT
Online Access:https://www.mdpi.com/1424-8220/21/16/5418
Description
Summary:Wearable and Internet of Things (IoT) technologies in sports open a new era in athlete’s training, not only for performance monitoring and evaluation but also for fitness assessment. These technologies rely on sensor systems that collect, process and transmit relevant data, such as biomarkers and/or other performance indicators that are crucial to evaluate the evolution of the athlete’s condition, and therefore potentiate their performance. This work aims to identify and summarize recent studies that have used wearables and IoT technologies and discuss its applicability for fitness assessment. A systematic review of electronic databases (WOS, CCC, DIIDW, KJD, MEDLINE, RSCI, SCIELO, IEEEXplore, PubMed, SPORTDiscus, Cochrane and Web of Science) was undertaken according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. From the 280 studies initially identified, 20 were fully examined in terms of hardware and software and their applicability for fitness assessment. Results have shown that wearable and IoT technologies have been used in sports not only for fitness assessment but also for monitoring the athlete’s internal and external workloads, employing physiological status monitoring and activity recognition and tracking techniques. However, the maturity level of such technologies is still low, particularly with the need for the acquisition of more—and more effective—biomarkers regarding the athlete’s internal workload, which limits its wider adoption by the sports community.
ISSN:1424-8220