Influence of Sand Fines Transport Velocity on Erosion-Corrosion Phenomena of Carbon Steel 90-Degree Elbow

Erosion-corrosion is an ineluctable flow assurance problem confronted in hydrocarbon transportation and production systems. In this work, the effect of sand fines velocity on the erosion-corrosion behavior of AISI 1018 carbon steel long radius 90° elbows was experimentally and numerically investigat...

Full description

Bibliographic Details
Main Authors: Rehan Khan, Hamdan H. Ya, William Pao, Mohamad Zaki bin Abdullah, Faizul Azly Dzubir
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/10/5/626
Description
Summary:Erosion-corrosion is an ineluctable flow assurance problem confronted in hydrocarbon transportation and production systems. In this work, the effect of sand fines velocity on the erosion-corrosion behavior of AISI 1018 carbon steel long radius 90° elbows was experimentally and numerically investigated for liquid-solid flow conditions. Experiments were effectuated for sand fines of mean diameter 50 µm circulated in a flow loop with three different velocities (0.5, 1 and 2 m/s). To elucidate the erosion-corrosion mechanism and degradation rate, the material loss analysis, multilayer paint modeling (MPM) and microscopic imaging technique were employed, with computational fluid dynamics (CFD) and discrete phase modeling (DPM) also capacitating to evaluate the erosion distribution. It was perceived that increasing slurry velocity significantly changes the particle-wall impaction mechanism, leading to an increase in material degradation in the elbow bottom section up to 2 times in comparison to the low transport velocity. The erosion scars and pits development at the elbows internal surface was found to govern the wear mechanism in the carbon steel and made downstream section susceptible to erosion and corrosion. The material removal mechanisms were ascertained to change from cutting to pitting and plastic deformation with an increase of sand fines transportation velocity from 0.5 m/s to 2 m/s.
ISSN:2075-4701