Hematopoietic stem-cell senescence and myocardial repair - Coronary artery disease genotype/phenotype analysis of post-MI myocardial regeneration response induced by CABG/CD133+ bone marrow hematopoietic stem cell treatment in RCT PERFECT Phase 3
Background: Bone marrow stem cell clonal dysfunction by somatic mutation is suspected to affect post-infarction myocardial regeneration after coronary bypass surgery (CABG). Methods: Transcriptome and variant expression analysis was studied in the phase 3 PERFECT trial post myocardial infarction CAB...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2020-07-01
|
Series: | EBioMedicine |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2352396420302371 |
id |
doaj-dd58128840ab4b1fb0fa839501efef79 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Markus Wolfien Denise Klatt Amankeldi A. Salybekov Masaaki Ii Miki Komatsu-Horii Ralf Gaebel Julia Philippou-Massier Eric Schrinner Hiroshi Akimaru Erika Akimaru Robert David Jens Garbade Jan Gummert Axel Haverich Holger Hennig Hiroto Iwasaki Alexander Kaminski Atsuhiko Kawamoto Christian Klopsch Johannes T. Kowallick Stefan Krebs Julia Nesteruk Hermann Reichenspurner Christian Ritter Christof Stamm Ayumi Tani-Yokoyama Helmut Blum Olaf Wolkenhauer Axel Schambach Takayuki Asahara Gustav Steinhoff |
spellingShingle |
Markus Wolfien Denise Klatt Amankeldi A. Salybekov Masaaki Ii Miki Komatsu-Horii Ralf Gaebel Julia Philippou-Massier Eric Schrinner Hiroshi Akimaru Erika Akimaru Robert David Jens Garbade Jan Gummert Axel Haverich Holger Hennig Hiroto Iwasaki Alexander Kaminski Atsuhiko Kawamoto Christian Klopsch Johannes T. Kowallick Stefan Krebs Julia Nesteruk Hermann Reichenspurner Christian Ritter Christof Stamm Ayumi Tani-Yokoyama Helmut Blum Olaf Wolkenhauer Axel Schambach Takayuki Asahara Gustav Steinhoff Hematopoietic stem-cell senescence and myocardial repair - Coronary artery disease genotype/phenotype analysis of post-MI myocardial regeneration response induced by CABG/CD133+ bone marrow hematopoietic stem cell treatment in RCT PERFECT Phase 3 EBioMedicine Clonal hematopoiesis of indeterminate pathology CHIP SH2B3 Myocardial regeneration Cardiac stem cell therapy Angiogenesis induction |
author_facet |
Markus Wolfien Denise Klatt Amankeldi A. Salybekov Masaaki Ii Miki Komatsu-Horii Ralf Gaebel Julia Philippou-Massier Eric Schrinner Hiroshi Akimaru Erika Akimaru Robert David Jens Garbade Jan Gummert Axel Haverich Holger Hennig Hiroto Iwasaki Alexander Kaminski Atsuhiko Kawamoto Christian Klopsch Johannes T. Kowallick Stefan Krebs Julia Nesteruk Hermann Reichenspurner Christian Ritter Christof Stamm Ayumi Tani-Yokoyama Helmut Blum Olaf Wolkenhauer Axel Schambach Takayuki Asahara Gustav Steinhoff |
author_sort |
Markus Wolfien |
title |
Hematopoietic stem-cell senescence and myocardial repair - Coronary artery disease genotype/phenotype analysis of post-MI myocardial regeneration response induced by CABG/CD133+ bone marrow hematopoietic stem cell treatment in RCT PERFECT Phase 3 |
title_short |
Hematopoietic stem-cell senescence and myocardial repair - Coronary artery disease genotype/phenotype analysis of post-MI myocardial regeneration response induced by CABG/CD133+ bone marrow hematopoietic stem cell treatment in RCT PERFECT Phase 3 |
title_full |
Hematopoietic stem-cell senescence and myocardial repair - Coronary artery disease genotype/phenotype analysis of post-MI myocardial regeneration response induced by CABG/CD133+ bone marrow hematopoietic stem cell treatment in RCT PERFECT Phase 3 |
title_fullStr |
Hematopoietic stem-cell senescence and myocardial repair - Coronary artery disease genotype/phenotype analysis of post-MI myocardial regeneration response induced by CABG/CD133+ bone marrow hematopoietic stem cell treatment in RCT PERFECT Phase 3 |
title_full_unstemmed |
Hematopoietic stem-cell senescence and myocardial repair - Coronary artery disease genotype/phenotype analysis of post-MI myocardial regeneration response induced by CABG/CD133+ bone marrow hematopoietic stem cell treatment in RCT PERFECT Phase 3 |
title_sort |
hematopoietic stem-cell senescence and myocardial repair - coronary artery disease genotype/phenotype analysis of post-mi myocardial regeneration response induced by cabg/cd133+ bone marrow hematopoietic stem cell treatment in rct perfect phase 3 |
publisher |
Elsevier |
series |
EBioMedicine |
issn |
2352-3964 |
publishDate |
2020-07-01 |
description |
Background: Bone marrow stem cell clonal dysfunction by somatic mutation is suspected to affect post-infarction myocardial regeneration after coronary bypass surgery (CABG). Methods: Transcriptome and variant expression analysis was studied in the phase 3 PERFECT trial post myocardial infarction CABG and CD133+ bone marrow derived hematopoetic stem cells showing difference in left ventricular ejection fraction (∆LVEF) myocardial regeneration Responders (n=14; ∆LVEF +16% day 180/0) and Non-responders (n=9; ∆LVEF -1.1% day 180/0). Subsequently, the findings have been validated in an independent patient cohort (n=14) as well as in two preclinical mouse models investigating SH2B3/LNK antisense or knockout deficient conditions. Findings: 1. Clinical: R differed from NR in a total of 161 genes in differential expression (n=23, q<0•05) and 872 genes in coexpression analysis (n=23, q<0•05). Machine Learning clustering analysis revealed distinct RvsNR preoperative gene-expression signatures in peripheral blood acorrelated to SH2B3 (p<0.05). Mutation analysis revealed increased specific variants in RvsNR. (R: 48 genes; NR: 224 genes). 2. Preclinical: SH2B3/LNK-silenced hematopoietic stem cell (HSC) clones displayed significant overgrowth of myeloid and immune cells in bone marrow, peripheral blood, and tissue at day 160 after competitive bone-marrow transplantation into mice. SH2B3/LNK−/− mice demonstrated enhanced cardiac repair through augmenting the kinetics of bone marrow-derived endothelial progenitor cells, increased capillary density in ischemic myocardium, and reduced left ventricular fibrosis with preserved cardiac function. 3. Validation: Evaluation analysis in 14 additional patients revealed 85% RvsNR (12/14 patients) prediction accuracy for the identified biomarker signature. Interpretation: Myocardial repair is affected by HSC gene response and somatic mutation. Machine Learning can be utilized to identify and predict pathological HSC response. Funding: German Ministry of Research and Education (BMBF): Reference and Translation Center for Cardiac Stem Cell Therapy - FKZ0312138A and FKZ031L0106C, German Ministry of Research and Education (BMBF): Collaborative research center - DFG:SFB738 and Center of Excellence - DFG:EC-REBIRTH), European Social Fonds: ESF/IV-WM-B34-0011/08, ESF/IV-WM-B34-0030/10, and Miltenyi Biotec GmbH, Bergisch-Gladbach, Germany. Japanese Ministry of Health : Health and Labour Sciences Research Grant (H14-trans-001, H17-trans-002) Trial registration: ClinicalTrials.gov NCT00950274 |
topic |
Clonal hematopoiesis of indeterminate pathology CHIP SH2B3 Myocardial regeneration Cardiac stem cell therapy Angiogenesis induction |
url |
http://www.sciencedirect.com/science/article/pii/S2352396420302371 |
work_keys_str_mv |
AT markuswolfien hematopoieticstemcellsenescenceandmyocardialrepaircoronaryarterydiseasegenotypephenotypeanalysisofpostmimyocardialregenerationresponseinducedbycabgcd133bonemarrowhematopoieticstemcelltreatmentinrctperfectphase3 AT deniseklatt hematopoieticstemcellsenescenceandmyocardialrepaircoronaryarterydiseasegenotypephenotypeanalysisofpostmimyocardialregenerationresponseinducedbycabgcd133bonemarrowhematopoieticstemcelltreatmentinrctperfectphase3 AT amankeldiasalybekov hematopoieticstemcellsenescenceandmyocardialrepaircoronaryarterydiseasegenotypephenotypeanalysisofpostmimyocardialregenerationresponseinducedbycabgcd133bonemarrowhematopoieticstemcelltreatmentinrctperfectphase3 AT masaakiii hematopoieticstemcellsenescenceandmyocardialrepaircoronaryarterydiseasegenotypephenotypeanalysisofpostmimyocardialregenerationresponseinducedbycabgcd133bonemarrowhematopoieticstemcelltreatmentinrctperfectphase3 AT mikikomatsuhorii hematopoieticstemcellsenescenceandmyocardialrepaircoronaryarterydiseasegenotypephenotypeanalysisofpostmimyocardialregenerationresponseinducedbycabgcd133bonemarrowhematopoieticstemcelltreatmentinrctperfectphase3 AT ralfgaebel hematopoieticstemcellsenescenceandmyocardialrepaircoronaryarterydiseasegenotypephenotypeanalysisofpostmimyocardialregenerationresponseinducedbycabgcd133bonemarrowhematopoieticstemcelltreatmentinrctperfectphase3 AT juliaphilippoumassier hematopoieticstemcellsenescenceandmyocardialrepaircoronaryarterydiseasegenotypephenotypeanalysisofpostmimyocardialregenerationresponseinducedbycabgcd133bonemarrowhematopoieticstemcelltreatmentinrctperfectphase3 AT ericschrinner hematopoieticstemcellsenescenceandmyocardialrepaircoronaryarterydiseasegenotypephenotypeanalysisofpostmimyocardialregenerationresponseinducedbycabgcd133bonemarrowhematopoieticstemcelltreatmentinrctperfectphase3 AT hiroshiakimaru hematopoieticstemcellsenescenceandmyocardialrepaircoronaryarterydiseasegenotypephenotypeanalysisofpostmimyocardialregenerationresponseinducedbycabgcd133bonemarrowhematopoieticstemcelltreatmentinrctperfectphase3 AT erikaakimaru hematopoieticstemcellsenescenceandmyocardialrepaircoronaryarterydiseasegenotypephenotypeanalysisofpostmimyocardialregenerationresponseinducedbycabgcd133bonemarrowhematopoieticstemcelltreatmentinrctperfectphase3 AT robertdavid hematopoieticstemcellsenescenceandmyocardialrepaircoronaryarterydiseasegenotypephenotypeanalysisofpostmimyocardialregenerationresponseinducedbycabgcd133bonemarrowhematopoieticstemcelltreatmentinrctperfectphase3 AT jensgarbade hematopoieticstemcellsenescenceandmyocardialrepaircoronaryarterydiseasegenotypephenotypeanalysisofpostmimyocardialregenerationresponseinducedbycabgcd133bonemarrowhematopoieticstemcelltreatmentinrctperfectphase3 AT jangummert hematopoieticstemcellsenescenceandmyocardialrepaircoronaryarterydiseasegenotypephenotypeanalysisofpostmimyocardialregenerationresponseinducedbycabgcd133bonemarrowhematopoieticstemcelltreatmentinrctperfectphase3 AT axelhaverich hematopoieticstemcellsenescenceandmyocardialrepaircoronaryarterydiseasegenotypephenotypeanalysisofpostmimyocardialregenerationresponseinducedbycabgcd133bonemarrowhematopoieticstemcelltreatmentinrctperfectphase3 AT holgerhennig hematopoieticstemcellsenescenceandmyocardialrepaircoronaryarterydiseasegenotypephenotypeanalysisofpostmimyocardialregenerationresponseinducedbycabgcd133bonemarrowhematopoieticstemcelltreatmentinrctperfectphase3 AT hirotoiwasaki hematopoieticstemcellsenescenceandmyocardialrepaircoronaryarterydiseasegenotypephenotypeanalysisofpostmimyocardialregenerationresponseinducedbycabgcd133bonemarrowhematopoieticstemcelltreatmentinrctperfectphase3 AT alexanderkaminski hematopoieticstemcellsenescenceandmyocardialrepaircoronaryarterydiseasegenotypephenotypeanalysisofpostmimyocardialregenerationresponseinducedbycabgcd133bonemarrowhematopoieticstemcelltreatmentinrctperfectphase3 AT atsuhikokawamoto hematopoieticstemcellsenescenceandmyocardialrepaircoronaryarterydiseasegenotypephenotypeanalysisofpostmimyocardialregenerationresponseinducedbycabgcd133bonemarrowhematopoieticstemcelltreatmentinrctperfectphase3 AT christianklopsch hematopoieticstemcellsenescenceandmyocardialrepaircoronaryarterydiseasegenotypephenotypeanalysisofpostmimyocardialregenerationresponseinducedbycabgcd133bonemarrowhematopoieticstemcelltreatmentinrctperfectphase3 AT johannestkowallick hematopoieticstemcellsenescenceandmyocardialrepaircoronaryarterydiseasegenotypephenotypeanalysisofpostmimyocardialregenerationresponseinducedbycabgcd133bonemarrowhematopoieticstemcelltreatmentinrctperfectphase3 AT stefankrebs hematopoieticstemcellsenescenceandmyocardialrepaircoronaryarterydiseasegenotypephenotypeanalysisofpostmimyocardialregenerationresponseinducedbycabgcd133bonemarrowhematopoieticstemcelltreatmentinrctperfectphase3 AT julianesteruk hematopoieticstemcellsenescenceandmyocardialrepaircoronaryarterydiseasegenotypephenotypeanalysisofpostmimyocardialregenerationresponseinducedbycabgcd133bonemarrowhematopoieticstemcelltreatmentinrctperfectphase3 AT hermannreichenspurner hematopoieticstemcellsenescenceandmyocardialrepaircoronaryarterydiseasegenotypephenotypeanalysisofpostmimyocardialregenerationresponseinducedbycabgcd133bonemarrowhematopoieticstemcelltreatmentinrctperfectphase3 AT christianritter hematopoieticstemcellsenescenceandmyocardialrepaircoronaryarterydiseasegenotypephenotypeanalysisofpostmimyocardialregenerationresponseinducedbycabgcd133bonemarrowhematopoieticstemcelltreatmentinrctperfectphase3 AT christofstamm hematopoieticstemcellsenescenceandmyocardialrepaircoronaryarterydiseasegenotypephenotypeanalysisofpostmimyocardialregenerationresponseinducedbycabgcd133bonemarrowhematopoieticstemcelltreatmentinrctperfectphase3 AT ayumitaniyokoyama hematopoieticstemcellsenescenceandmyocardialrepaircoronaryarterydiseasegenotypephenotypeanalysisofpostmimyocardialregenerationresponseinducedbycabgcd133bonemarrowhematopoieticstemcelltreatmentinrctperfectphase3 AT helmutblum hematopoieticstemcellsenescenceandmyocardialrepaircoronaryarterydiseasegenotypephenotypeanalysisofpostmimyocardialregenerationresponseinducedbycabgcd133bonemarrowhematopoieticstemcelltreatmentinrctperfectphase3 AT olafwolkenhauer hematopoieticstemcellsenescenceandmyocardialrepaircoronaryarterydiseasegenotypephenotypeanalysisofpostmimyocardialregenerationresponseinducedbycabgcd133bonemarrowhematopoieticstemcelltreatmentinrctperfectphase3 AT axelschambach hematopoieticstemcellsenescenceandmyocardialrepaircoronaryarterydiseasegenotypephenotypeanalysisofpostmimyocardialregenerationresponseinducedbycabgcd133bonemarrowhematopoieticstemcelltreatmentinrctperfectphase3 AT takayukiasahara hematopoieticstemcellsenescenceandmyocardialrepaircoronaryarterydiseasegenotypephenotypeanalysisofpostmimyocardialregenerationresponseinducedbycabgcd133bonemarrowhematopoieticstemcelltreatmentinrctperfectphase3 AT gustavsteinhoff hematopoieticstemcellsenescenceandmyocardialrepaircoronaryarterydiseasegenotypephenotypeanalysisofpostmimyocardialregenerationresponseinducedbycabgcd133bonemarrowhematopoieticstemcelltreatmentinrctperfectphase3 |
_version_ |
1724691888527638528 |
spelling |
doaj-dd58128840ab4b1fb0fa839501efef792020-11-25T03:01:48ZengElsevierEBioMedicine2352-39642020-07-0157102862Hematopoietic stem-cell senescence and myocardial repair - Coronary artery disease genotype/phenotype analysis of post-MI myocardial regeneration response induced by CABG/CD133+ bone marrow hematopoietic stem cell treatment in RCT PERFECT Phase 3Markus Wolfien0Denise Klatt1Amankeldi A. Salybekov2Masaaki Ii3Miki Komatsu-Horii4Ralf Gaebel5Julia Philippou-Massier6Eric Schrinner7Hiroshi Akimaru8Erika Akimaru9Robert David10Jens Garbade11Jan Gummert12Axel Haverich13Holger Hennig14Hiroto Iwasaki15Alexander Kaminski16Atsuhiko Kawamoto17Christian Klopsch18Johannes T. Kowallick19Stefan Krebs20Julia Nesteruk21Hermann Reichenspurner22Christian Ritter23Christof Stamm24Ayumi Tani-Yokoyama25Helmut Blum26Olaf Wolkenhauer27Axel Schambach28Takayuki Asahara29Gustav Steinhoff30Department of Systems Biology and Bioinformatics, University Rostock, Institute of Computer Science, Ulmenstrasse 69, 18057 Rostock, GermanyHannover Medical School, Institute of Experimental Hematology, Carl-Neuberg-Strasse 1, 30625 Hannover, GermanyDepartment of Advanced Medicine Science, Tokai University School of Medicine, Shimokasuya 143, Isehara, Kanagawa 259-1143, JapanNanobridge, LLC. 1-3-5-202, Sawaragi-Nishi Ibaraki Osaka 567-0868, JapanInstitute of Biomedical Research and Innovation, 2-2 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, JapanReference and Translation Center for Cardiac Stem Cell Therapy, Department Life, Light and Matter and Department of cardiac surgery, University Medicine Rostock, Schillingallee 35, 18055 Rostock, GermanyLudwig-Maximilians-Universität München, LAFUGA Genomics, Gene Center, Feodor-Lynen-Strasse 25, 81377 Muenchen, GermanyUniversity Medical Center Goettingen, Institute for Diagnostic and Interventional Radiology, Robert-Koch-Strasse 40, 37075 Göttingen, GermanyInstitute of Biomedical Research and Innovation, 2-2 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, JapanInstitute of Biomedical Research and Innovation, 2-2 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, JapanReference and Translation Center for Cardiac Stem Cell Therapy, Department Life, Light and Matter and Department of cardiac surgery, University Medicine Rostock, Schillingallee 35, 18055 Rostock, GermanyDepartment of Cardiac Surgery, Heart Center University Medicine Leipzig, Strümpellstrasse 39, 04289 Leipzig, GermanyHeart and diabetes center North Rhine Westfalia, University hospital of the Ruhr university Bochum, Georgstraße 11, 32545 Bad Oeynhausen, GermanyMedical school Hannover, Department of heart-, thoracic- and vascular surgery, Carl Neuberg Strasse 1, 30625 Hannover, GermanyDepartment of Systems Biology and Bioinformatics, University Rostock, Institute of Computer Science, Ulmenstrasse 69, 18057 Rostock, GermanyDepartment of cardiothoracic surgery, Osaka city university, 1-4-3, Asahimachi, Abeno. Osaka, 545-8585. JapanReference and Translation Center for Cardiac Stem Cell Therapy, Department Life, Light and Matter and Department of cardiac surgery, University Medicine Rostock, Schillingallee 35, 18055 Rostock, GermanyInstitute of Biomedical Research and Innovation, 2-2 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, JapanReference and Translation Center for Cardiac Stem Cell Therapy, Department Life, Light and Matter and Department of cardiac surgery, University Medicine Rostock, Schillingallee 35, 18055 Rostock, GermanyUniversity Medical Center Goettingen, Institute for Diagnostic and Interventional Radiology, Robert-Koch-Strasse 40, 37075 Göttingen, GermanyLudwig-Maximilians-Universität München, LAFUGA Genomics, Gene Center, Feodor-Lynen-Strasse 25, 81377 Muenchen, GermanyReference and Translation Center for Cardiac Stem Cell Therapy, Department Life, Light and Matter and Department of cardiac surgery, University Medicine Rostock, Schillingallee 35, 18055 Rostock, GermanyDepartment of Cardiac and Vascular Surgery, University heart center Hamburg, Martinistraße. 52, 20246 Hamburg, GermanyUniversity Medical Center Goettingen, Institute for Diagnostic and Interventional Radiology, Robert-Koch-Strasse 40, 37075 Göttingen, GermanyGerman Heart Center Berlin, Department of Heart-, Thoracic- and Vascular Surgery, Augustenburger Platz 1, 13353 Berlin, GermanyInstitute of Biomedical Research and Innovation, 2-2 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, JapanLudwig-Maximilians-Universität München, LAFUGA Genomics, Gene Center, Feodor-Lynen-Strasse 25, 81377 Muenchen, GermanyDepartment of Systems Biology and Bioinformatics, University Rostock, Institute of Computer Science, Ulmenstrasse 69, 18057 Rostock, GermanyHannover Medical School, Institute of Experimental Hematology, Carl-Neuberg-Strasse 1, 30625 Hannover, GermanyDepartment of Advanced Medicine Science, Tokai University School of Medicine, Shimokasuya 143, Isehara, Kanagawa 259-1143, JapanReference and Translation Center for Cardiac Stem Cell Therapy, Department Life, Light and Matter and Department of cardiac surgery, University Medicine Rostock, Schillingallee 35, 18055 Rostock, Germany; Corresponding author.Background: Bone marrow stem cell clonal dysfunction by somatic mutation is suspected to affect post-infarction myocardial regeneration after coronary bypass surgery (CABG). Methods: Transcriptome and variant expression analysis was studied in the phase 3 PERFECT trial post myocardial infarction CABG and CD133+ bone marrow derived hematopoetic stem cells showing difference in left ventricular ejection fraction (∆LVEF) myocardial regeneration Responders (n=14; ∆LVEF +16% day 180/0) and Non-responders (n=9; ∆LVEF -1.1% day 180/0). Subsequently, the findings have been validated in an independent patient cohort (n=14) as well as in two preclinical mouse models investigating SH2B3/LNK antisense or knockout deficient conditions. Findings: 1. Clinical: R differed from NR in a total of 161 genes in differential expression (n=23, q<0•05) and 872 genes in coexpression analysis (n=23, q<0•05). Machine Learning clustering analysis revealed distinct RvsNR preoperative gene-expression signatures in peripheral blood acorrelated to SH2B3 (p<0.05). Mutation analysis revealed increased specific variants in RvsNR. (R: 48 genes; NR: 224 genes). 2. Preclinical: SH2B3/LNK-silenced hematopoietic stem cell (HSC) clones displayed significant overgrowth of myeloid and immune cells in bone marrow, peripheral blood, and tissue at day 160 after competitive bone-marrow transplantation into mice. SH2B3/LNK−/− mice demonstrated enhanced cardiac repair through augmenting the kinetics of bone marrow-derived endothelial progenitor cells, increased capillary density in ischemic myocardium, and reduced left ventricular fibrosis with preserved cardiac function. 3. Validation: Evaluation analysis in 14 additional patients revealed 85% RvsNR (12/14 patients) prediction accuracy for the identified biomarker signature. Interpretation: Myocardial repair is affected by HSC gene response and somatic mutation. Machine Learning can be utilized to identify and predict pathological HSC response. Funding: German Ministry of Research and Education (BMBF): Reference and Translation Center for Cardiac Stem Cell Therapy - FKZ0312138A and FKZ031L0106C, German Ministry of Research and Education (BMBF): Collaborative research center - DFG:SFB738 and Center of Excellence - DFG:EC-REBIRTH), European Social Fonds: ESF/IV-WM-B34-0011/08, ESF/IV-WM-B34-0030/10, and Miltenyi Biotec GmbH, Bergisch-Gladbach, Germany. Japanese Ministry of Health : Health and Labour Sciences Research Grant (H14-trans-001, H17-trans-002) Trial registration: ClinicalTrials.gov NCT00950274http://www.sciencedirect.com/science/article/pii/S2352396420302371Clonal hematopoiesis of indeterminate pathologyCHIPSH2B3Myocardial regenerationCardiac stem cell therapyAngiogenesis induction |