Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition
Designing high-performance and energy efficient neural network hardware remains a challenge. Here, the authors develop a van der Waals hybrid synaptic device that features linear and symmetric conductance-update characteristics and demonstrate the feasibility for hardware neural network performing a...
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2020-08-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-020-17849-3 |
id |
doaj-ddfeb437f955467eb2a0687b177b7f09 |
---|---|
record_format |
Article |
spelling |
doaj-ddfeb437f955467eb2a0687b177b7f092021-08-08T11:38:45ZengNature Publishing GroupNature Communications2041-17232020-08-011111910.1038/s41467-020-17849-3Artificial van der Waals hybrid synapse and its application to acoustic pattern recognitionSeunghwan Seo0Beom-Seok Kang1Je-Jun Lee2Hyo-Jun Ryu3Sungjun Kim4Hyeongjun Kim5Seyong Oh6Jaewoo Shim7Keun Heo8Saeroonter Oh9Jin-Hong Park10Department of Electrical and Computer Engineering, Sungkyunkwan UniversityDepartment of Electrical and Computer Engineering, Sungkyunkwan UniversityDepartment of Electrical and Computer Engineering, Sungkyunkwan UniversityDepartment of Electrical and Computer Engineering, Sungkyunkwan UniversityDepartment of Electrical and Computer Engineering, Sungkyunkwan UniversityDepartment of Electrical and Computer Engineering, Sungkyunkwan UniversityDepartment of Electrical and Computer Engineering, Sungkyunkwan UniversityDepartment of Mechanical Engineering, Massachusetts Institute of Technology (MIT)Department of Electrical and Computer Engineering, Sungkyunkwan UniversityDivision of Electrical Engineering, Hanyang UniversityDepartment of Electrical and Computer Engineering, Sungkyunkwan UniversityDesigning high-performance and energy efficient neural network hardware remains a challenge. Here, the authors develop a van der Waals hybrid synaptic device that features linear and symmetric conductance-update characteristics and demonstrate the feasibility for hardware neural network performing acoustic pattern recognition.https://doi.org/10.1038/s41467-020-17849-3 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Seunghwan Seo Beom-Seok Kang Je-Jun Lee Hyo-Jun Ryu Sungjun Kim Hyeongjun Kim Seyong Oh Jaewoo Shim Keun Heo Saeroonter Oh Jin-Hong Park |
spellingShingle |
Seunghwan Seo Beom-Seok Kang Je-Jun Lee Hyo-Jun Ryu Sungjun Kim Hyeongjun Kim Seyong Oh Jaewoo Shim Keun Heo Saeroonter Oh Jin-Hong Park Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition Nature Communications |
author_facet |
Seunghwan Seo Beom-Seok Kang Je-Jun Lee Hyo-Jun Ryu Sungjun Kim Hyeongjun Kim Seyong Oh Jaewoo Shim Keun Heo Saeroonter Oh Jin-Hong Park |
author_sort |
Seunghwan Seo |
title |
Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition |
title_short |
Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition |
title_full |
Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition |
title_fullStr |
Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition |
title_full_unstemmed |
Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition |
title_sort |
artificial van der waals hybrid synapse and its application to acoustic pattern recognition |
publisher |
Nature Publishing Group |
series |
Nature Communications |
issn |
2041-1723 |
publishDate |
2020-08-01 |
description |
Designing high-performance and energy efficient neural network hardware remains a challenge. Here, the authors develop a van der Waals hybrid synaptic device that features linear and symmetric conductance-update characteristics and demonstrate the feasibility for hardware neural network performing acoustic pattern recognition. |
url |
https://doi.org/10.1038/s41467-020-17849-3 |
work_keys_str_mv |
AT seunghwanseo artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition AT beomseokkang artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition AT jejunlee artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition AT hyojunryu artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition AT sungjunkim artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition AT hyeongjunkim artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition AT seyongoh artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition AT jaewooshim artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition AT keunheo artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition AT saeroonteroh artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition AT jinhongpark artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition |
_version_ |
1721215789198999552 |