Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition

Designing high-performance and energy efficient neural network hardware remains a challenge. Here, the authors develop a van der Waals hybrid synaptic device that features linear and symmetric conductance-update characteristics and demonstrate the feasibility for hardware neural network performing a...

Full description

Bibliographic Details
Main Authors: Seunghwan Seo, Beom-Seok Kang, Je-Jun Lee, Hyo-Jun Ryu, Sungjun Kim, Hyeongjun Kim, Seyong Oh, Jaewoo Shim, Keun Heo, Saeroonter Oh, Jin-Hong Park
Format: Article
Language:English
Published: Nature Publishing Group 2020-08-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-020-17849-3
id doaj-ddfeb437f955467eb2a0687b177b7f09
record_format Article
spelling doaj-ddfeb437f955467eb2a0687b177b7f092021-08-08T11:38:45ZengNature Publishing GroupNature Communications2041-17232020-08-011111910.1038/s41467-020-17849-3Artificial van der Waals hybrid synapse and its application to acoustic pattern recognitionSeunghwan Seo0Beom-Seok Kang1Je-Jun Lee2Hyo-Jun Ryu3Sungjun Kim4Hyeongjun Kim5Seyong Oh6Jaewoo Shim7Keun Heo8Saeroonter Oh9Jin-Hong Park10Department of Electrical and Computer Engineering, Sungkyunkwan UniversityDepartment of Electrical and Computer Engineering, Sungkyunkwan UniversityDepartment of Electrical and Computer Engineering, Sungkyunkwan UniversityDepartment of Electrical and Computer Engineering, Sungkyunkwan UniversityDepartment of Electrical and Computer Engineering, Sungkyunkwan UniversityDepartment of Electrical and Computer Engineering, Sungkyunkwan UniversityDepartment of Electrical and Computer Engineering, Sungkyunkwan UniversityDepartment of Mechanical Engineering, Massachusetts Institute of Technology (MIT)Department of Electrical and Computer Engineering, Sungkyunkwan UniversityDivision of Electrical Engineering, Hanyang UniversityDepartment of Electrical and Computer Engineering, Sungkyunkwan UniversityDesigning high-performance and energy efficient neural network hardware remains a challenge. Here, the authors develop a van der Waals hybrid synaptic device that features linear and symmetric conductance-update characteristics and demonstrate the feasibility for hardware neural network performing acoustic pattern recognition.https://doi.org/10.1038/s41467-020-17849-3
collection DOAJ
language English
format Article
sources DOAJ
author Seunghwan Seo
Beom-Seok Kang
Je-Jun Lee
Hyo-Jun Ryu
Sungjun Kim
Hyeongjun Kim
Seyong Oh
Jaewoo Shim
Keun Heo
Saeroonter Oh
Jin-Hong Park
spellingShingle Seunghwan Seo
Beom-Seok Kang
Je-Jun Lee
Hyo-Jun Ryu
Sungjun Kim
Hyeongjun Kim
Seyong Oh
Jaewoo Shim
Keun Heo
Saeroonter Oh
Jin-Hong Park
Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition
Nature Communications
author_facet Seunghwan Seo
Beom-Seok Kang
Je-Jun Lee
Hyo-Jun Ryu
Sungjun Kim
Hyeongjun Kim
Seyong Oh
Jaewoo Shim
Keun Heo
Saeroonter Oh
Jin-Hong Park
author_sort Seunghwan Seo
title Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition
title_short Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition
title_full Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition
title_fullStr Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition
title_full_unstemmed Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition
title_sort artificial van der waals hybrid synapse and its application to acoustic pattern recognition
publisher Nature Publishing Group
series Nature Communications
issn 2041-1723
publishDate 2020-08-01
description Designing high-performance and energy efficient neural network hardware remains a challenge. Here, the authors develop a van der Waals hybrid synaptic device that features linear and symmetric conductance-update characteristics and demonstrate the feasibility for hardware neural network performing acoustic pattern recognition.
url https://doi.org/10.1038/s41467-020-17849-3
work_keys_str_mv AT seunghwanseo artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition
AT beomseokkang artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition
AT jejunlee artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition
AT hyojunryu artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition
AT sungjunkim artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition
AT hyeongjunkim artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition
AT seyongoh artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition
AT jaewooshim artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition
AT keunheo artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition
AT saeroonteroh artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition
AT jinhongpark artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition
_version_ 1721215789198999552