Detection of Influenza Virus Using a SOI-Nanoribbon Chip, Based on an N-Type Field-Effect Transistor

The detection of influenza A virions with a nanoribbon detector (NR detector) has been demonstrated. Chips for the detector have been fabricated based on silicon-on-insulator nanoribbon structures (SOI nanoribbon chip), using a complementary metal-oxide-semiconductor (CMOS)-compatible technology—by...

Full description

Bibliographic Details
Main Authors: Kristina A. Malsagova, Tatyana O. Pleshakova, Andrey F. Kozlov, Rafael A. Galiullin, Vladimir P. Popov, Fedor V. Tikhonenko, Alexander V. Glukhov, Vadim S. Ziborov, Ivan D. Shumov, Oleg F. Petrov, Vladimir M. Generalov, Anastasia A. Cheremiskina, Alexander G. Durumanov, Alexander P. Agafonov, Elena V. Gavrilova, Rinat A. Maksyutov, Alexander S. Safatov, Valentin G. Nikitaev, Alexander N. Pronichev, Vladimir A. Konev, Alexander I. Archakov, Yuri D. Ivanov
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Biosensors
Subjects:
SOI
Online Access:https://www.mdpi.com/2079-6374/11/4/119
id doaj-e187ed1b52f24b6db7ee77bb455d211a
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Kristina A. Malsagova
Tatyana O. Pleshakova
Andrey F. Kozlov
Rafael A. Galiullin
Vladimir P. Popov
Fedor V. Tikhonenko
Alexander V. Glukhov
Vadim S. Ziborov
Ivan D. Shumov
Oleg F. Petrov
Vladimir M. Generalov
Anastasia A. Cheremiskina
Alexander G. Durumanov
Alexander P. Agafonov
Elena V. Gavrilova
Rinat A. Maksyutov
Alexander S. Safatov
Valentin G. Nikitaev
Alexander N. Pronichev
Vladimir A. Konev
Alexander I. Archakov
Yuri D. Ivanov
spellingShingle Kristina A. Malsagova
Tatyana O. Pleshakova
Andrey F. Kozlov
Rafael A. Galiullin
Vladimir P. Popov
Fedor V. Tikhonenko
Alexander V. Glukhov
Vadim S. Ziborov
Ivan D. Shumov
Oleg F. Petrov
Vladimir M. Generalov
Anastasia A. Cheremiskina
Alexander G. Durumanov
Alexander P. Agafonov
Elena V. Gavrilova
Rinat A. Maksyutov
Alexander S. Safatov
Valentin G. Nikitaev
Alexander N. Pronichev
Vladimir A. Konev
Alexander I. Archakov
Yuri D. Ivanov
Detection of Influenza Virus Using a SOI-Nanoribbon Chip, Based on an N-Type Field-Effect Transistor
Biosensors
SOI
nanoribbon
silicon-on-insulator
influenza A virus
antibody
author_facet Kristina A. Malsagova
Tatyana O. Pleshakova
Andrey F. Kozlov
Rafael A. Galiullin
Vladimir P. Popov
Fedor V. Tikhonenko
Alexander V. Glukhov
Vadim S. Ziborov
Ivan D. Shumov
Oleg F. Petrov
Vladimir M. Generalov
Anastasia A. Cheremiskina
Alexander G. Durumanov
Alexander P. Agafonov
Elena V. Gavrilova
Rinat A. Maksyutov
Alexander S. Safatov
Valentin G. Nikitaev
Alexander N. Pronichev
Vladimir A. Konev
Alexander I. Archakov
Yuri D. Ivanov
author_sort Kristina A. Malsagova
title Detection of Influenza Virus Using a SOI-Nanoribbon Chip, Based on an N-Type Field-Effect Transistor
title_short Detection of Influenza Virus Using a SOI-Nanoribbon Chip, Based on an N-Type Field-Effect Transistor
title_full Detection of Influenza Virus Using a SOI-Nanoribbon Chip, Based on an N-Type Field-Effect Transistor
title_fullStr Detection of Influenza Virus Using a SOI-Nanoribbon Chip, Based on an N-Type Field-Effect Transistor
title_full_unstemmed Detection of Influenza Virus Using a SOI-Nanoribbon Chip, Based on an N-Type Field-Effect Transistor
title_sort detection of influenza virus using a soi-nanoribbon chip, based on an n-type field-effect transistor
publisher MDPI AG
series Biosensors
issn 2079-6374
publishDate 2021-04-01
description The detection of influenza A virions with a nanoribbon detector (NR detector) has been demonstrated. Chips for the detector have been fabricated based on silicon-on-insulator nanoribbon structures (SOI nanoribbon chip), using a complementary metal-oxide-semiconductor (CMOS)-compatible technology—by means of gas-phase etching and standard optical photolithography. The surface of the SOI nanoribbon chip contains a matrix of 10 nanoribbon (NR) sensor elements. SOI nanoribbon chips of n-type conductance have been used for this study. For biospecific detection of target particles, antibodies against influenza virus have been covalently immobilized onto NRs. Influenza A virus detection was performed by real-time registration of the source-drain current through the NRs. The detection of the target viral particles was carried out in buffer solutions at the target particles concentration within the range from 10<sup>7</sup> to 10<sup>3</sup> viral particles per milliliter (VP/mL). The lowest detectable concentration of the target viral particles was 6 × 10<sup>−16</sup> M (corresponding to 10<sup>4</sup> VP/mL). The use of solutions containing ~10<sup>9</sup> to 10<sup>10</sup> VP/mL resulted in saturation of the sensor surface with the target virions. In the saturation mode, detection was impossible.
topic SOI
nanoribbon
silicon-on-insulator
influenza A virus
antibody
url https://www.mdpi.com/2079-6374/11/4/119
work_keys_str_mv AT kristinaamalsagova detectionofinfluenzavirususingasoinanoribbonchipbasedonanntypefieldeffecttransistor
AT tatyanaopleshakova detectionofinfluenzavirususingasoinanoribbonchipbasedonanntypefieldeffecttransistor
AT andreyfkozlov detectionofinfluenzavirususingasoinanoribbonchipbasedonanntypefieldeffecttransistor
AT rafaelagaliullin detectionofinfluenzavirususingasoinanoribbonchipbasedonanntypefieldeffecttransistor
AT vladimirppopov detectionofinfluenzavirususingasoinanoribbonchipbasedonanntypefieldeffecttransistor
AT fedorvtikhonenko detectionofinfluenzavirususingasoinanoribbonchipbasedonanntypefieldeffecttransistor
AT alexandervglukhov detectionofinfluenzavirususingasoinanoribbonchipbasedonanntypefieldeffecttransistor
AT vadimsziborov detectionofinfluenzavirususingasoinanoribbonchipbasedonanntypefieldeffecttransistor
AT ivandshumov detectionofinfluenzavirususingasoinanoribbonchipbasedonanntypefieldeffecttransistor
AT olegfpetrov detectionofinfluenzavirususingasoinanoribbonchipbasedonanntypefieldeffecttransistor
AT vladimirmgeneralov detectionofinfluenzavirususingasoinanoribbonchipbasedonanntypefieldeffecttransistor
AT anastasiaacheremiskina detectionofinfluenzavirususingasoinanoribbonchipbasedonanntypefieldeffecttransistor
AT alexandergdurumanov detectionofinfluenzavirususingasoinanoribbonchipbasedonanntypefieldeffecttransistor
AT alexanderpagafonov detectionofinfluenzavirususingasoinanoribbonchipbasedonanntypefieldeffecttransistor
AT elenavgavrilova detectionofinfluenzavirususingasoinanoribbonchipbasedonanntypefieldeffecttransistor
AT rinatamaksyutov detectionofinfluenzavirususingasoinanoribbonchipbasedonanntypefieldeffecttransistor
AT alexanderssafatov detectionofinfluenzavirususingasoinanoribbonchipbasedonanntypefieldeffecttransistor
AT valentingnikitaev detectionofinfluenzavirususingasoinanoribbonchipbasedonanntypefieldeffecttransistor
AT alexandernpronichev detectionofinfluenzavirususingasoinanoribbonchipbasedonanntypefieldeffecttransistor
AT vladimirakonev detectionofinfluenzavirususingasoinanoribbonchipbasedonanntypefieldeffecttransistor
AT alexanderiarchakov detectionofinfluenzavirususingasoinanoribbonchipbasedonanntypefieldeffecttransistor
AT yuridivanov detectionofinfluenzavirususingasoinanoribbonchipbasedonanntypefieldeffecttransistor
_version_ 1721529647155380224
spelling doaj-e187ed1b52f24b6db7ee77bb455d211a2021-04-12T23:01:22ZengMDPI AGBiosensors2079-63742021-04-011111911910.3390/bios11040119Detection of Influenza Virus Using a SOI-Nanoribbon Chip, Based on an N-Type Field-Effect TransistorKristina A. Malsagova0Tatyana O. Pleshakova1Andrey F. Kozlov2Rafael A. Galiullin3Vladimir P. Popov4Fedor V. Tikhonenko5Alexander V. Glukhov6Vadim S. Ziborov7Ivan D. Shumov8Oleg F. Petrov9Vladimir M. Generalov10Anastasia A. Cheremiskina11Alexander G. Durumanov12Alexander P. Agafonov13Elena V. Gavrilova14Rinat A. Maksyutov15Alexander S. Safatov16Valentin G. Nikitaev17Alexander N. Pronichev18Vladimir A. Konev19Alexander I. Archakov20Yuri D. Ivanov21Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, RussiaLaboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, RussiaLaboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, RussiaLaboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, RussiaRzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, RussiaRzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, RussiaJSC Novosibirsk Plant of Semiconductor Devices with OKB, 630082 Novosibirsk, RussiaLaboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, RussiaLaboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, RussiaJoint Institute for High Temperatures of Russian Academy of Sciences, 125412 Moscow, RussiaFederal Budgetary Research Institution—State Research Center of Virology and Biotechnology VECTOR, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being, 630559 Novosibirsk Region, Koltsovo, RussiaFederal Budgetary Research Institution—State Research Center of Virology and Biotechnology VECTOR, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being, 630559 Novosibirsk Region, Koltsovo, RussiaFederal Budgetary Research Institution—State Research Center of Virology and Biotechnology VECTOR, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being, 630559 Novosibirsk Region, Koltsovo, RussiaFederal Budgetary Research Institution—State Research Center of Virology and Biotechnology VECTOR, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being, 630559 Novosibirsk Region, Koltsovo, RussiaFederal Budgetary Research Institution—State Research Center of Virology and Biotechnology VECTOR, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being, 630559 Novosibirsk Region, Koltsovo, RussiaFederal Budgetary Research Institution—State Research Center of Virology and Biotechnology VECTOR, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being, 630559 Novosibirsk Region, Koltsovo, RussiaFederal Budgetary Research Institution—State Research Center of Virology and Biotechnology VECTOR, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being, 630559 Novosibirsk Region, Koltsovo, RussiaNational Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, RussiaNational Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, RussiaDepartment of Infectious Diseases in Children, Faculty of Pediatrics, Pirogov Russian National Research Medical University, 117997 Moscow, RussiaLaboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, RussiaLaboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, RussiaThe detection of influenza A virions with a nanoribbon detector (NR detector) has been demonstrated. Chips for the detector have been fabricated based on silicon-on-insulator nanoribbon structures (SOI nanoribbon chip), using a complementary metal-oxide-semiconductor (CMOS)-compatible technology—by means of gas-phase etching and standard optical photolithography. The surface of the SOI nanoribbon chip contains a matrix of 10 nanoribbon (NR) sensor elements. SOI nanoribbon chips of n-type conductance have been used for this study. For biospecific detection of target particles, antibodies against influenza virus have been covalently immobilized onto NRs. Influenza A virus detection was performed by real-time registration of the source-drain current through the NRs. The detection of the target viral particles was carried out in buffer solutions at the target particles concentration within the range from 10<sup>7</sup> to 10<sup>3</sup> viral particles per milliliter (VP/mL). The lowest detectable concentration of the target viral particles was 6 × 10<sup>−16</sup> M (corresponding to 10<sup>4</sup> VP/mL). The use of solutions containing ~10<sup>9</sup> to 10<sup>10</sup> VP/mL resulted in saturation of the sensor surface with the target virions. In the saturation mode, detection was impossible.https://www.mdpi.com/2079-6374/11/4/119SOInanoribbonsilicon-on-insulatorinfluenza A virusantibody