N-of-1-pathways MixEnrich: advancing precision medicine via single-subject analysis in discovering dynamic changes of transcriptomes

Abstract Background Transcriptome analytic tools are commonly used across patient cohorts to develop drugs and predict clinical outcomes. However, as precision medicine pursues more accurate and individualized treatment decisions, these methods are not designed to address single-patient transcriptom...

Full description

Bibliographic Details
Main Authors: Qike Li, A. Grant Schissler, Vincent Gardeux, Ikbel Achour, Colleen Kenost, Joanne Berghout, Haiquan Li, Hao Helen Zhang, Yves A. Lussier
Format: Article
Language:English
Published: BMC 2017-05-01
Series:BMC Medical Genomics
Subjects:
Online Access:http://link.springer.com/article/10.1186/s12920-017-0263-4
Description
Summary:Abstract Background Transcriptome analytic tools are commonly used across patient cohorts to develop drugs and predict clinical outcomes. However, as precision medicine pursues more accurate and individualized treatment decisions, these methods are not designed to address single-patient transcriptome analyses. We previously developed and validated the N-of-1-pathways framework using two methods, Wilcoxon and Mahalanobis Distance (MD), for personal transcriptome analysis derived from a pair of samples of a single patient. Although, both methods uncover concordantly dysregulated pathways, they are not designed to detect dysregulated pathways with up- and down-regulated genes (bidirectional dysregulation) that are ubiquitous in biological systems. Results We developed N-of-1-pathways MixEnrich, a mixture model followed by a gene set enrichment test, to uncover bidirectional and concordantly dysregulated pathways one patient at a time. We assess its accuracy in a comprehensive simulation study and in a RNA-Seq data analysis of head and neck squamous cell carcinomas (HNSCCs). In presence of bidirectionally dysregulated genes in the pathway or in presence of high background noise, MixEnrich substantially outperforms previous single-subject transcriptome analysis methods, both in the simulation study and the HNSCCs data analysis (ROC Curves; higher true positive rates; lower false positive rates). Bidirectional and concordant dysregulated pathways uncovered by MixEnrich in each patient largely overlapped with the quasi-gold standard compared to other single-subject and cohort-based transcriptome analyses. Conclusion The greater performance of MixEnrich presents an advantage over previous methods to meet the promise of providing accurate personal transcriptome analysis to support precision medicine at point of care.
ISSN:1755-8794