Source apportionment of arsenic in atmospheric dust fall out in an urban residential area, Raipur, Central India

The components and quantities of atmospheric dust fallout have been reported to be the pollution indicator of large urban areas. The multiplicity and complexity of sources of atmospheric dusts in urban regions has put forward the need of source apportionment of these sources indicating their contrib...

Full description

Bibliographic Details
Main Authors: G. Balakrishna, S. Pervez, D. S. Bisht
Format: Article
Language:English
Published: Copernicus Publications 2011-06-01
Series:Atmospheric Chemistry and Physics
Online Access:http://www.atmos-chem-phys.net/11/5141/2011/acp-11-5141-2011.pdf
Description
Summary:The components and quantities of atmospheric dust fallout have been reported to be the pollution indicator of large urban areas. The multiplicity and complexity of sources of atmospheric dusts in urban regions has put forward the need of source apportionment of these sources indicating their contribution to specific environmental receptor. The study presented here is focused on investigation of source contribution estimates of Arsenic in urban dust fallout in an urban-industrial area, Raipur, India. Source-receptor based representative sampling plan using longitudinal study design has been adopted. Six sampling sites have been identified on the basis of land use for development plan of anthropogenic activities and factors related to the transportation and dispersion pattern of atmospheric dusts. Source apportionment has been done using Chemical Mass Balance (CMB 8). Good fit parameters and relative source contribution has been analyzed and documented. Dominance of coal fired industries sources on arsenic levels measured at selected ambient residential receptors compared to line sources has been observed. Road-traffic has shown highest contribution of dust at indoor houses and out door-street automobile exhaust has shows highest contribution for arsenic. The results of CMB output and regression data of source-receptor dust matrices have shown comparable pattern.
ISSN:1680-7316
1680-7324