Advances in X-ray free electron laser (XFEL) diffraction data processing applied to the crystal structure of the synaptotagmin-1 / SNARE complex

X-ray free electron lasers (XFELs) reduce the effects of radiation damage on macromolecular diffraction data and thereby extend the limiting resolution. Previously, we adapted classical post-refinement techniques to XFEL diffraction data to produce accurate diffraction data sets from a limited numbe...

Full description

Bibliographic Details
Main Authors: Artem Y Lyubimov, Monarin Uervirojnangkoorn, Oliver B Zeldin, Qiangjun Zhou, Minglei Zhao, Aaron S Brewster, Tara Michels-Clark, James M Holton, Nicholas K Sauter, William I Weis, Axel T Brunger
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2016-10-01
Series:eLife
Subjects:
Online Access:https://elifesciences.org/articles/18740
id doaj-e9788a81936e49069eb9cafbcab50732
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Artem Y Lyubimov
Monarin Uervirojnangkoorn
Oliver B Zeldin
Qiangjun Zhou
Minglei Zhao
Aaron S Brewster
Tara Michels-Clark
James M Holton
Nicholas K Sauter
William I Weis
Axel T Brunger
spellingShingle Artem Y Lyubimov
Monarin Uervirojnangkoorn
Oliver B Zeldin
Qiangjun Zhou
Minglei Zhao
Aaron S Brewster
Tara Michels-Clark
James M Holton
Nicholas K Sauter
William I Weis
Axel T Brunger
Advances in X-ray free electron laser (XFEL) diffraction data processing applied to the crystal structure of the synaptotagmin-1 / SNARE complex
eLife
macromolecular crystallography
X-ray free electron laser
radiation damage
post-refinement
author_facet Artem Y Lyubimov
Monarin Uervirojnangkoorn
Oliver B Zeldin
Qiangjun Zhou
Minglei Zhao
Aaron S Brewster
Tara Michels-Clark
James M Holton
Nicholas K Sauter
William I Weis
Axel T Brunger
author_sort Artem Y Lyubimov
title Advances in X-ray free electron laser (XFEL) diffraction data processing applied to the crystal structure of the synaptotagmin-1 / SNARE complex
title_short Advances in X-ray free electron laser (XFEL) diffraction data processing applied to the crystal structure of the synaptotagmin-1 / SNARE complex
title_full Advances in X-ray free electron laser (XFEL) diffraction data processing applied to the crystal structure of the synaptotagmin-1 / SNARE complex
title_fullStr Advances in X-ray free electron laser (XFEL) diffraction data processing applied to the crystal structure of the synaptotagmin-1 / SNARE complex
title_full_unstemmed Advances in X-ray free electron laser (XFEL) diffraction data processing applied to the crystal structure of the synaptotagmin-1 / SNARE complex
title_sort advances in x-ray free electron laser (xfel) diffraction data processing applied to the crystal structure of the synaptotagmin-1 / snare complex
publisher eLife Sciences Publications Ltd
series eLife
issn 2050-084X
publishDate 2016-10-01
description X-ray free electron lasers (XFELs) reduce the effects of radiation damage on macromolecular diffraction data and thereby extend the limiting resolution. Previously, we adapted classical post-refinement techniques to XFEL diffraction data to produce accurate diffraction data sets from a limited number of diffraction images (Uervirojnangkoorn et al., 2015), and went on to use these techniques to obtain a complete data set from crystals of the synaptotagmin-1 / SNARE complex and to determine the structure at 3.5 Å resolution (Zhou et al., 2015). Here, we describe new advances in our methods and present a reprocessed XFEL data set of the synaptotagmin-1 / SNARE complex. The reprocessing produced small improvements in electron density maps and the refined atomic model. The maps also contained more information than those of a lower resolution (4.1 Å) synchrotron data set. Processing a set of simulated XFEL diffraction images revealed that our methods yield accurate data and atomic models.
topic macromolecular crystallography
X-ray free electron laser
radiation damage
post-refinement
url https://elifesciences.org/articles/18740
work_keys_str_mv AT artemylyubimov advancesinxrayfreeelectronlaserxfeldiffractiondataprocessingappliedtothecrystalstructureofthesynaptotagmin1snarecomplex
AT monarinuervirojnangkoorn advancesinxrayfreeelectronlaserxfeldiffractiondataprocessingappliedtothecrystalstructureofthesynaptotagmin1snarecomplex
AT oliverbzeldin advancesinxrayfreeelectronlaserxfeldiffractiondataprocessingappliedtothecrystalstructureofthesynaptotagmin1snarecomplex
AT qiangjunzhou advancesinxrayfreeelectronlaserxfeldiffractiondataprocessingappliedtothecrystalstructureofthesynaptotagmin1snarecomplex
AT mingleizhao advancesinxrayfreeelectronlaserxfeldiffractiondataprocessingappliedtothecrystalstructureofthesynaptotagmin1snarecomplex
AT aaronsbrewster advancesinxrayfreeelectronlaserxfeldiffractiondataprocessingappliedtothecrystalstructureofthesynaptotagmin1snarecomplex
AT taramichelsclark advancesinxrayfreeelectronlaserxfeldiffractiondataprocessingappliedtothecrystalstructureofthesynaptotagmin1snarecomplex
AT jamesmholton advancesinxrayfreeelectronlaserxfeldiffractiondataprocessingappliedtothecrystalstructureofthesynaptotagmin1snarecomplex
AT nicholasksauter advancesinxrayfreeelectronlaserxfeldiffractiondataprocessingappliedtothecrystalstructureofthesynaptotagmin1snarecomplex
AT williamiweis advancesinxrayfreeelectronlaserxfeldiffractiondataprocessingappliedtothecrystalstructureofthesynaptotagmin1snarecomplex
AT axeltbrunger advancesinxrayfreeelectronlaserxfeldiffractiondataprocessingappliedtothecrystalstructureofthesynaptotagmin1snarecomplex
_version_ 1721476209081057280
spelling doaj-e9788a81936e49069eb9cafbcab507322021-05-05T00:38:13ZengeLife Sciences Publications LtdeLife2050-084X2016-10-01510.7554/eLife.18740Advances in X-ray free electron laser (XFEL) diffraction data processing applied to the crystal structure of the synaptotagmin-1 / SNARE complexArtem Y Lyubimov0Monarin Uervirojnangkoorn1Oliver B Zeldin2Qiangjun Zhou3Minglei Zhao4Aaron S Brewster5Tara Michels-Clark6James M Holton7Nicholas K Sauter8William I Weis9Axel T Brunger10https://orcid.org/0000-0001-5121-2036Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States; Neurology and Neurological Science, Stanford University, Stanford, United States; Structural Biology, Stanford University, Stanford, United States; Photon Science, Stanford University, Stanford, United States; Howard Hughes Medical Institute, Stanford University, Stanford, United StatesDepartment of Molecular and Cellular Physiology, Stanford University, Stanford, United States; Neurology and Neurological Science, Stanford University, Stanford, United States; Photon Science, Stanford University, Stanford, United States; Structural Biology, Stanford University, Stanford, United States; Howard Hughes Medical Institute, Stanford University, Stanford, United StatesDepartment of Molecular and Cellular Physiology, Stanford University, Stanford, United States; Neurology and Neurological Science, Stanford University, Stanford, United States; Photon Science, Stanford University, Stanford, United States; Structural Biology, Stanford University, Stanford, United States; Howard Hughes Medical Institute, Stanford University, Stanford, United StatesDepartment of Molecular and Cellular Physiology, Stanford University, Stanford, United States; Neurology and Neurological Science, Stanford University, Stanford, United States; Photon Science, Stanford University, Stanford, United States; Structural Biology, Stanford University, Stanford, United States; Howard Hughes Medical Institute, Stanford University, Stanford, United StatesDepartment of Molecular and Cellular Physiology, Stanford University, Stanford, United States; Neurology and Neurological Science, Stanford University, Stanford, United States; Photon Science, Stanford University, Stanford, United States; Structural Biology, Stanford University, Stanford, United States; Howard Hughes Medical Institute, Stanford University, Stanford, United StatesMolecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United StatesMolecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United StatesMolecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, United States; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United StatesMolecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United StatesDepartment of Molecular and Cellular Physiology, Stanford University, Stanford, United States; Structural Biology, Stanford University, Stanford, United States; Photon Science, Stanford University, Stanford, United StatesDepartment of Molecular and Cellular Physiology, Stanford University, Stanford, United States; Neurology and Neurological Science, Stanford University, Stanford, United States; Photon Science, Stanford University, Stanford, United States; Structural Biology, Stanford University, Stanford, United States; Howard Hughes Medical Institute, Stanford University, Stanford, United StatesX-ray free electron lasers (XFELs) reduce the effects of radiation damage on macromolecular diffraction data and thereby extend the limiting resolution. Previously, we adapted classical post-refinement techniques to XFEL diffraction data to produce accurate diffraction data sets from a limited number of diffraction images (Uervirojnangkoorn et al., 2015), and went on to use these techniques to obtain a complete data set from crystals of the synaptotagmin-1 / SNARE complex and to determine the structure at 3.5 Å resolution (Zhou et al., 2015). Here, we describe new advances in our methods and present a reprocessed XFEL data set of the synaptotagmin-1 / SNARE complex. The reprocessing produced small improvements in electron density maps and the refined atomic model. The maps also contained more information than those of a lower resolution (4.1 Å) synchrotron data set. Processing a set of simulated XFEL diffraction images revealed that our methods yield accurate data and atomic models.https://elifesciences.org/articles/18740macromolecular crystallographyX-ray free electron laserradiation damagepost-refinement