Optimal Design and Control of MMC STATCOM for Improving Power Quality Indicators

In recent years, modular multilevel converters (MMC) are becoming popular in the distribution and transmission of electrical systems. The multilevel converter suffers from circulating current within the converter that increases the conduction loss of switches and increases the thermal stress on the...

Full description

Bibliographic Details
Main Authors: Ahmed A. Zaki Diab, Terad Ebraheem, Raseel Aljendy, Hamdy M. Sultan, Ziad M. Ali
Format: Article
Language:English
Published: MDPI AG 2020-04-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/7/2490
Description
Summary:In recent years, modular multilevel converters (MMC) are becoming popular in the distribution and transmission of electrical systems. The multilevel converter suffers from circulating current within the converter that increases the conduction loss of switches and increases the thermal stress on the capacitors and switches’ IGBTs. One of the main solutions to control the circulating current is to keep the capacitor voltage balanced in the MMC. In this paper, a new hybrid control algorithm for the cascaded modular multilevel converter is presented. The Harris hawk’s optimization (HHO) and Atom search optimization (ASO) are used to optimally design the controller of the hybrid MMC. The proposed structure of modular multilevel inverters allows effective operation, a low level of harmonic distortion in the absence of output voltage filters, a low switching frequency, and excellent flexibility to achieve the requirements of any voltage level. The effectiveness of the proposed controller and the multilevel converter has been verified through testing with the application of the MMC-static synchronous compensator (STATCOM). The stability of the voltage capacitors was monitored with balanced and unbalanced loads on the studied network.
ISSN:2076-3417