Design of a Low Phase Noise VCO for Rubidium Atomic Frequency Standard

Compared to the size and the power consumption of the traditional atomic clocks, the ones based on coherent population trapping (CPT) can provide improvement by two orders of magnitude in both aspects above, making them needed urgently in many fields. Among different CPT atomic clocks, the one made...

Full description

Bibliographic Details
Main Authors: Ju Qingyun, Li Xinwei, Ji Lei, Tang Liang, Qiao Donghai
Format: Article
Language:English
Published: EDP Sciences 2016-01-01
Series:MATEC Web of Conferences
Online Access:http://dx.doi.org/10.1051/matecconf/20167707007
Description
Summary:Compared to the size and the power consumption of the traditional atomic clocks, the ones based on coherent population trapping (CPT) can provide improvement by two orders of magnitude in both aspects above, making them needed urgently in many fields. Among different CPT atomic clocks, the one made with the rubidium atom are used widely, and their operating performance largely depends on its internal voltage-controlled oscillator (VCO) which is used to provide a proper microwave signal. Based on this, a small size and low phase noise 3.035GHz VCO is designed with a modified Clapp circuit topology using low-cost surface-mount components, including a coaxial resonant (COAX) with high quality factor. The designed VCO is simulated and optimized with the combined use of the negative resistance analysis method and the transmission analysis with a virtual-ground. In order to obtain the desired results, different values of key capacitor elements are tried according to their concrete influences on the VCO during the process of the circuit tuning. The test results show that the phase noises of the VCO are -60.49dBc/Hz@300Hz, -73.08dBc/Hz@1KHz and -97.48dBc/Hz@10KHz, the output power is -1.13dBm and the voltage-controlled tuning sensitivity is about 12MHz/V.
ISSN:2261-236X