Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials

Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-pen...

Full description

Bibliographic Details
Main Authors: Hofmann, F. (Author), Mason, D. R. (Author), Dudarev, S. L. (Author), Eliason, Jeffrey K. (Contributor), Maznev, Alexei (Contributor), Nelson, Keith Adam (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Chemistry (Contributor)
Format: Article
Language:English
Published: Nature Publishing Group, 2016-01-13T18:29:47Z.
Subjects:
Online Access:Get fulltext
LEADER 02117 am a22002773u 4500
001 100815
042 |a dc 
100 1 0 |a Hofmann, F.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Chemistry  |e contributor 
100 1 0 |a Eliason, Jeffrey K.  |e contributor 
100 1 0 |a Maznev, Alexei  |e contributor 
100 1 0 |a Nelson, Keith Adam  |e contributor 
700 1 0 |a Mason, D. R.  |e author 
700 1 0 |a Dudarev, S. L.  |e author 
700 1 0 |a Eliason, Jeffrey K.  |e author 
700 1 0 |a Maznev, Alexei  |e author 
700 1 0 |a Nelson, Keith Adam  |e author 
245 0 0 |a Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials 
260 |b Nature Publishing Group,   |c 2016-01-13T18:29:47Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/100815 
520 |a Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants. 
520 |a Engineering and Physical Sciences Research Council (Programme Grant EP/G050031) 
520 |a Engineering and Physical Sciences Research Council (Programme Grant EP/H018921/1) 
546 |a en_US 
655 7 |a Article 
773 |t Scientific Reports