Three-dimensional multilayered fibrous constructs for wound healing applications

Electrospun materials are promising scaffolds due to their light-weight, high surface-area and low-cost fabrication, however, such scaffolds are commonly obtained as ultrathin two-dimensional non-woven meshes, lacking on topographical specificity and surface side-dependent properties. Herein, it is...

Full description

Bibliographic Details
Main Authors: Rego, Ana M. B. (Author), Aguiar-Ricardo, Ana (Author), Reis, Tiago C. (Contributor), Castleberry, Steven A (Contributor), Hammond, Paula T. (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Chemical Engineering (Contributor)
Format: Article
Language:English
Published: Brill Academic Publishers, 2017-02-23T16:45:34Z.
Subjects:
Online Access:Get fulltext
LEADER 03304 am a22003493u 4500
001 107120
042 |a dc 
100 1 0 |a Rego, Ana M. B.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Chemical Engineering  |e contributor 
100 1 0 |a Reis, Tiago C.  |e contributor 
100 1 0 |a Castleberry, Steven A  |e contributor 
100 1 0 |a Hammond, Paula T.  |e contributor 
700 1 0 |a Aguiar-Ricardo, Ana  |e author 
700 1 0 |a Reis, Tiago C.  |e author 
700 1 0 |a Castleberry, Steven A  |e author 
700 1 0 |a Hammond, Paula T.  |e author 
245 0 0 |a Three-dimensional multilayered fibrous constructs for wound healing applications 
260 |b Brill Academic Publishers,   |c 2017-02-23T16:45:34Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/107120 
520 |a Electrospun materials are promising scaffolds due to their light-weight, high surface-area and low-cost fabrication, however, such scaffolds are commonly obtained as ultrathin two-dimensional non-woven meshes, lacking on topographical specificity and surface side-dependent properties. Herein, it is reported the production of three-dimensional fibrous materials with an asymmetrical inner structure and engineered surfaces. The manufactured constructs evidence fibrous-based microsized conical protrusions [length: (10 ± 3) × 10[superscript 2] μm; width: (3.8 ± 0.8) × 10[superscript 2] μm] at their top side, with a median peak density of 73 peaks per cm[superscript 2], while their bottom side resembles to a non-woven mesh commonly observed in the fabrication of two-dimensional electrospun materials. Regarding their thickness (3.7 ± 0.1 mm) and asymmetric fibrous inner architecture, such materials avoid external liquid absorption while promoting internal liquid uptake. Nevertheless, such constructs also observed the high porosity (89.9%) and surface area (1.44 m[superscript 2] g[superscript −1]) characteristic of traditional electrospun mats. Spray layer-by-layer assembly is used to effectively coat the structurally complex materials, allowing to complementary tailor features such as water vapor transmission, swelling ratio and bioactive agent release. Tested as wound dressings, the novel constructs are capable of withstanding (11.0 ± 0.3) × 10[superscript 4] kg m[superscript −2] even after 14 days of hydration, while actively promote wound healing (90 ± 0.5% of wound closure within 48 hours) although avoiding cell adhesion on the dressings for a painless removal. 
520 |a Calouste Gulbenkian Foundation 
520 |a Fundação para a Ciência e a Tecnologia (Portugal) (Contracts UID/QUI/50006/2013, MIT-Pt/BS-CTRM/0051/2008, and PTDC/EMETME/ 103375/2008) 
520 |a Fundação para a Ciência e a Tecnologia (Portugal) (Doctoral Grant SFRH/BD/51188/2010) 
520 |a MIT-Portugal Program 
520 |a Fonds Europeen de Developpement Economique et Regional 
520 |a Fonds structurels européens 
520 |a United States. Army Research Office (Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies. Contract W911NF-07-D-0004) 
520 |a Sanofi Aventis (Firm) 
520 |a Massachusetts Institute of Technology. Center for Biomedical Engineering 
546 |a en_US 
655 7 |a Article 
773 |t Biomaterials Science