Tweets as data: Demonstration of TweeQL and TwitInfo

Microblogs such as Twitter are a tremendous repository of user-generated content. Increasingly, we see tweets used as data sources for novel applications such as disaster mapping, brand sentiment analysis, and real-time visualizations. In each scenario, the workflow for processing tweets is ad-hoc,...

Full description

Bibliographic Details
Main Authors: Marcus, Adam (Contributor), Bernstein, Michael S. (Contributor), Badar, Osama (Contributor), Karger, David R. (Contributor), Madden, Samuel R. (Contributor), Miller, Robert C. (Contributor)
Other Authors: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory (Contributor), Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor)
Format: Article
Language:English
Published: Association for Computing Machinery (ACM), 2012-09-17T16:12:12Z.
Subjects:
Online Access:Get fulltext
Description
Summary:Microblogs such as Twitter are a tremendous repository of user-generated content. Increasingly, we see tweets used as data sources for novel applications such as disaster mapping, brand sentiment analysis, and real-time visualizations. In each scenario, the workflow for processing tweets is ad-hoc, and a lot of unnecessary work goes into repeating common data processing patterns. We introduce TweeQL, a stream query processing language that presents a SQL-like query interface for unstructured tweets to generate structured data for downstream applications. We have built several tools on top of TweeQL, most notably TwitInfo, an event timeline generation and exploration interface that summarizes events as they are discussed on Twitter. Our demonstration will allow the audience to interact with both TweeQL and TwitInfo to convey the value of data embedded in tweets.