Oxidative chemical vapor deposition of conductive polymers for use in novel photovoltaic device architectures

Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 2013. === Cataloged from PDF version of thesis. === Includes bibliographical references. === The conductive polymer poly(3,4-ethylenedioxythiophene), (PEDOT), deposited via oxidative chemical vapor deposition (oCV...

Full description

Bibliographic Details
Main Author: Howden, Rachel M. (Rachel Mary)
Other Authors: Karen K. Gleason.
Format: Others
Language:English
Published: Massachusetts Institute of Technology 2013
Subjects:
Online Access:http://hdl.handle.net/1721.1/81680
id ndltd-MIT-oai-dspace.mit.edu-1721.1-81680
record_format oai_dc
spelling ndltd-MIT-oai-dspace.mit.edu-1721.1-816802019-05-02T16:20:17Z Oxidative chemical vapor deposition of conductive polymers for use in novel photovoltaic device architectures Howden, Rachel M. (Rachel Mary) Karen K. Gleason. Massachusetts Institute of Technology. Department of Chemical Engineering. Massachusetts Institute of Technology. Department of Chemical Engineering. Chemical Engineering. Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 2013. Cataloged from PDF version of thesis. Includes bibliographical references. The conductive polymer poly(3,4-ethylenedioxythiophene), (PEDOT), deposited via oxidative chemical vapor deposition (oCVD) has been investigated for use in organic electronic devices. The oCVD process as well as the application of oCVD PEDOT in photovoltaic devices is described. oCVD enables the synthesis of conjugated conductive films with advantageous properties for organic optoelectronic device applications. The oCVD process of forming the polymer film allows compatibility with a wide range of substrates, including those that are flexible or fragile, and provides a relatively low-energy means of depositing film layers that may not be possible through solution or other processing. Films deposited using varying oCVD process and pre- and post-treatment parameters (e.g. temperature, oxidant exposure, rinsing) were characterized based on their physical and electrical properties. It was found that acid rinsing of the already deposited films led to lower sheet resistance and surface roughness and an improvement in film stability. The oCVD PEDOT has been demonstrated as a replacement for solution-processed PEDOT:PSS as a hole transporting layer as well as for the transparent electrode material (typically ITO) in typical organic photovoltaic structures. Reverse-structure photovoltaic cells were also created using direct deposition of PEDOT electrodes onto small molecule active layer materials yielding fully dry-processed devices. The direct deposition of PEDOT top electrodes has enabled the fabrication of devices on opaque substrates leading to a greater than ten-fold improvement in previous devices fabricated on paper. Compatibility with novel photovoltaic materials has been demonstrated in work done using oCVD PEDOT as HTLs on graphene electrodes to make ITO-free devices. by Rachel M. Howden. Ph.D. 2013-10-24T17:43:14Z 2013-10-24T17:43:14Z 2013 2013 Thesis http://hdl.handle.net/1721.1/81680 860791890 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 139 p. application/pdf Massachusetts Institute of Technology
collection NDLTD
language English
format Others
sources NDLTD
topic Chemical Engineering.
spellingShingle Chemical Engineering.
Howden, Rachel M. (Rachel Mary)
Oxidative chemical vapor deposition of conductive polymers for use in novel photovoltaic device architectures
description Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 2013. === Cataloged from PDF version of thesis. === Includes bibliographical references. === The conductive polymer poly(3,4-ethylenedioxythiophene), (PEDOT), deposited via oxidative chemical vapor deposition (oCVD) has been investigated for use in organic electronic devices. The oCVD process as well as the application of oCVD PEDOT in photovoltaic devices is described. oCVD enables the synthesis of conjugated conductive films with advantageous properties for organic optoelectronic device applications. The oCVD process of forming the polymer film allows compatibility with a wide range of substrates, including those that are flexible or fragile, and provides a relatively low-energy means of depositing film layers that may not be possible through solution or other processing. Films deposited using varying oCVD process and pre- and post-treatment parameters (e.g. temperature, oxidant exposure, rinsing) were characterized based on their physical and electrical properties. It was found that acid rinsing of the already deposited films led to lower sheet resistance and surface roughness and an improvement in film stability. The oCVD PEDOT has been demonstrated as a replacement for solution-processed PEDOT:PSS as a hole transporting layer as well as for the transparent electrode material (typically ITO) in typical organic photovoltaic structures. Reverse-structure photovoltaic cells were also created using direct deposition of PEDOT electrodes onto small molecule active layer materials yielding fully dry-processed devices. The direct deposition of PEDOT top electrodes has enabled the fabrication of devices on opaque substrates leading to a greater than ten-fold improvement in previous devices fabricated on paper. Compatibility with novel photovoltaic materials has been demonstrated in work done using oCVD PEDOT as HTLs on graphene electrodes to make ITO-free devices. === by Rachel M. Howden. === Ph.D.
author2 Karen K. Gleason.
author_facet Karen K. Gleason.
Howden, Rachel M. (Rachel Mary)
author Howden, Rachel M. (Rachel Mary)
author_sort Howden, Rachel M. (Rachel Mary)
title Oxidative chemical vapor deposition of conductive polymers for use in novel photovoltaic device architectures
title_short Oxidative chemical vapor deposition of conductive polymers for use in novel photovoltaic device architectures
title_full Oxidative chemical vapor deposition of conductive polymers for use in novel photovoltaic device architectures
title_fullStr Oxidative chemical vapor deposition of conductive polymers for use in novel photovoltaic device architectures
title_full_unstemmed Oxidative chemical vapor deposition of conductive polymers for use in novel photovoltaic device architectures
title_sort oxidative chemical vapor deposition of conductive polymers for use in novel photovoltaic device architectures
publisher Massachusetts Institute of Technology
publishDate 2013
url http://hdl.handle.net/1721.1/81680
work_keys_str_mv AT howdenrachelmrachelmary oxidativechemicalvapordepositionofconductivepolymersforuseinnovelphotovoltaicdevicearchitectures
_version_ 1719039074184986624